Please use this identifier to cite or link to this item:
http://hdl.handle.net/10603/324394
Title: | Semantic Enriched Lecture Video Retrieval using Machine Learning Techniques |
Researcher: | Poornima, N |
Guide(s): | Saleena, B |
Keywords: | Computer Science Computer Science Interdisciplinary Applications Engineering and Technology |
University: | VIT University |
Completed Date: | 2020 |
Abstract: | Retrieving relevant information from a large collection of videos is a tedious and newlinetime-consuming process for a user. The main objective of this research is to enhance the efficiency of lecture video retrieval by incorporating semantics and data mining techniques. Videos are processed to identify keyframes and from each keyframe the text and texture features are extracted. Texts are recognized using Tesseract Optical Character Recognition (OCR) which is considered as one of the most accurate open-source OCR engine and texture features are extracted from keyframes using Gabor Ordinal Measure (GOM). Semantic words are also identified for each extracted word using WordNet. A feature database is created which contains the semantic words, text and texture features. Videos are grouped based on the similarities of their features using k-means clustering, to speed up the retrieval process. From the clustered features, relevant videos are retrieved using a combination of correlation and Naïve Bayes classification techniques. Domain ontologies are created for each category of videos in the database by a domain expert. Each keyword from the feature database is mapped with the keywords in the domain ontology. These keywords are used for annotating the videos. Semantic annotation of videos enhances the lecture video retrieval. Deep learning strategies are used to further improve the process of classification. Deep Belief Network (DBN) classification is used for retrieving the relevant videos which improve the accuracy of retrieval results. Whenever a query is given by the user, the classifier identifies the optimal cluster centroid related to the query. The performance of the proposed techniques are evaluated by considering text query and video query. Three evaluation metrics, namely, recall, F-measure, and precision are considered for analyzing the performance of retrieval results. The experimental results have proved that after incorporating the semantic and data miningtechniques to the video retrieval process the informati |
Pagination: | i-ix, 1-101 |
URI: | http://hdl.handle.net/10603/324394 |
Appears in Departments: | School of Computing Science and Engineering -VIT-Chennai |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
01_ title page.pdf | Attached File | 104.38 kB | Adobe PDF | View/Open |
02_ signed copy of declaration & certificate.pdf | 176.95 kB | Adobe PDF | View/Open | |
03_ abstract.pdf | 55.33 kB | Adobe PDF | View/Open | |
04_content.pdf | 42.95 kB | Adobe PDF | View/Open | |
05_ list of tables.pdf | 39.02 kB | Adobe PDF | View/Open | |
06_ list of figures.pdf | 41.16 kB | Adobe PDF | View/Open | |
07_ acknowledgement.pdf | 39.87 kB | Adobe PDF | View/Open | |
08_ chapter-1.pdf | 1.17 MB | Adobe PDF | View/Open | |
09_ chapter-2.pdf | 116.98 kB | Adobe PDF | View/Open | |
10_ chapter-3.pdf | 138.42 kB | Adobe PDF | View/Open | |
11_ chapter-4.pdf | 378.09 kB | Adobe PDF | View/Open | |
12_ chapter-5.pdf | 1.74 MB | Adobe PDF | View/Open | |
13_ chapter-6.pdf | 946.8 kB | Adobe PDF | View/Open | |
14_ chapter-7.pdf | 1.03 MB | Adobe PDF | View/Open | |
15_ chapter-8.pdf | 41.48 kB | Adobe PDF | View/Open | |
16_ references.pdf | 78.06 kB | Adobe PDF | View/Open | |
17_ list of publications.pdf | 39.05 kB | Adobe PDF | View/Open | |
18_ appendix.pdf | 2.19 MB | Adobe PDF | View/Open | |
80_recommendation.pdf | 149.17 kB | Adobe PDF | View/Open |
Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
Altmetric Badge: