Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/314817
Title: K means algorithm with a covariance matrix compared to partition based clustering algorithms
Researcher: Simhachalam, Boddana
Guide(s): Hymavathi, T.
Keywords: Mathematics
Mathematics Applied
Physical Sciences
University: Adikavi Nannaya University, Rajahmundry
Completed Date: 2018
Abstract: Data analysis contains several techniques and tools for handling the data. These newlinetechniques or algorithms play a notable role to assist the decision makers in making newlinepredictions that impact people and enterprises. Clustering or Classification is the core newlinemethod of data analysis. Clustering is an unsupervised multivariate analysis technique to newlinepartition or categorize the dataset into groups (classes or clusters) in a dataset such that the newlinemost indiscernible objects belong to the same group while the discernible objects in different newlinegroups. newline
Pagination: 
URI: http://hdl.handle.net/10603/314817
Appears in Departments:Department of Mathematics

Files in This Item:
File Description SizeFormat 
80_recommendation.pdfAttached File62.13 kBAdobe PDFView/Open
certificate-bsm.pdf100.99 kBAdobe PDFView/Open
chapter-i-bsm.pdf429 kBAdobe PDFView/Open
chapter-ii-bsm.pdf233.02 kBAdobe PDFView/Open
chapter-iii-bsm.pdf753.4 kBAdobe PDFView/Open
chapter-iv-bsm.pdf689.5 kBAdobe PDFView/Open
chapter-v-bsm.pdf820.81 kBAdobe PDFView/Open
chapter-vi-bsm.pdf1.18 MBAdobe PDFView/Open
chapter-vii-bsm.pdf798.55 kBAdobe PDFView/Open
preliminary pages-bsm.pdf113.47 kBAdobe PDFView/Open
title-bsm.pdf6.41 MBAdobe PDFView/Open
Show full item record


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: