Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/309409
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialFace recognition
dc.date.accessioned2020-12-18T12:00:54Z-
dc.date.available2020-12-18T12:00:54Z-
dc.identifier.urihttp://hdl.handle.net/10603/309409-
dc.description.abstractFace recognition is one of the most active research areas in biometric identification newline various face recognition models proposed with the acceptable performance newlineunder the supervised conditions. However, now days face recognition under uncontrolled newlinediseases such as Internet downloaded images, low-resolution images, newlinemobile, and surveillance recorded is gained significant researchers attention. The newlinesignificant variations in face illumination, pose, occlusion, and image quality are newlinekey state-of-art challenges for robust face recognition. The face recognition of plastic newlinesurgery facial images is also a challenging task. In this research work, we proposed newlinethe novel contributions towards the robust face recognition by considering newlinethe uncontrolled conditions and plastic surgery datasets. The proposed model of newlineface recognition is based on three contributions. newlineIn the first contribution, the initial face descriptor model called Hybrid Dual newlineCross Pattern (H-DCP) proposed to address the challenges of unconstrained face newlinerecognition. We used the Laplacian filter to lower the impact of illumination variations newlineand then extract H-DCP features at the component and holistic levels. In the newlinesecond contribution, we further extend the working of H-DCP to present a hybrid newlineface descriptor that bridges the gap between histogram representations and spatial newlineinformation efficiently. We applied the H-DCP and Local Directional Pattern (LDN) newlineon pre-processed face image, and then fuse its outcomes to generate the face code. newlineThe proposed face descriptor address the challenges related to variations in pose, newlineexpression, illuminations effectively, and efficiently. After the face descriptor, histogram newlinefeatures at different levels extracted. In the third contribution, after the newlinedesign of a novel hybrid face descriptor model, we focused on the design of effective newlinefeature extraction methods. The histogram features not enough to generate newlinethe most reliable and unique set of features, thus to improve the robustness of the newlineface recognition model, we design t
dc.format.extent97p
dc.languageEnglish
dc.relation61b
dc.rightsuniversity
dc.titleDevelopment and Design of New Techniques for Face Recognition and Classification
dc.title.alternative
dc.creator.researcherRanjanikar Manjiri Arunrao
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Artificial Intelligence
dc.subject.keywordEngineering and Technology
dc.description.noteBibliography
dc.contributor.guideKulkarni U V
dc.publisher.placeNanded
dc.publisher.universitySwami Ramanand Teerth Marathwada University
dc.publisher.institutionDepartment of Computer Science and Engineering
dc.date.registered2014
dc.date.completed2019
dc.date.awarded2020
dc.format.dimensions
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Department of Computer Science and Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File80.86 kBAdobe PDFView/Open
02_certificate.pdf41.43 kBAdobe PDFView/Open
03_abstract.pdf43.05 kBAdobe PDFView/Open
04_declaration.pdf41.27 kBAdobe PDFView/Open
05_acknowledgements.pdf44.77 kBAdobe PDFView/Open
06_contents.pdf43.04 kBAdobe PDFView/Open
07_list_of_tables.pdf41.62 kBAdobe PDFView/Open
08_list_of_figures.pdf43.28 kBAdobe PDFView/Open
09_abbreviations.pdf41.94 kBAdobe PDFView/Open
10_chapter 1.pdf1.32 MBAdobe PDFView/Open
11_chapter 2.pdf1.66 MBAdobe PDFView/Open
12_chapter 3.pdf707.01 kBAdobe PDFView/Open
13_chapter 4.pdf192.89 kBAdobe PDFView/Open
14_conclusions.pdf46.94 kBAdobe PDFView/Open
15_summary.pdf42.65 kBAdobe PDFView/Open
16_bibliography.pdf114.2 kBAdobe PDFView/Open
80_recommendation.pdf168.22 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: