Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/30842
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialAssessment and classification of Retinal images using ant colony Optimization based hybrid methods And support vector machinesen_US
dc.date.accessioned2014-12-12T11:59:35Z-
dc.date.available2014-12-12T11:59:35Z-
dc.date.issued2014-12-12-
dc.identifier.urihttp://hdl.handle.net/10603/30842-
dc.description.abstractIn this work digital retinal images in health and diseases have been newlineanalysed using Optimization based algorithm and hybrid techniques The newlineacquired fundus images N 300 were subjected to various techniques to newlineidentify objects in retinal images such as optic disc macula and blood vessels newlineusing Ant Colony Optimization method For comparison Morphological newlinedilation residue Otsu Matched filter local thresholds and modified newlinewatershed methods were also implemented Further their significant features newlinewere extracted selected and used for classification of normal and abnormal newlineimages using Naive Bayes classifier and Support Vector Machines newlineResults demonstrate the ability of the Ant Colony Optimization newlinemethod to identify optic disc and blood vessels with and without newlinepreprocessing The results provide high visual quality output with better newlineoptic disc and blood vessel identification It provides better delineation newlineextraction of blood vessels and also distinctly differentiates central veins and newlinesmall blood vessels compared to other methods The sensitivity and newlinespecificity obtained for the detection of blood vessels were 87 and 95 newlinerespectively The ratio of vessel to vessel free area using ACO method is newlinedifferent for normal and abnormal images p 0005 and the area under the newlineReceiver Operating Characteristics value is 0 95 The algorithm also detects newlinethe presence of exudates and red lesions in Diabetic Retinopathy images The newlinevalue of sensitivity specificity and Positive Predictive Value newline newlineen_US
dc.format.extentxv, 103p.en_US
dc.languageEnglishen_US
dc.relationp90-101.en_US
dc.rightsuniversityen_US
dc.titleAssessment and classification of Retinal images using ant colony Optimization based hybrid methods And support vector machinesen_US
dc.title.alternativeen_US
dc.creator.researcherKavitha Gen_US
dc.subject.keywordAnt Colony Optimizationen_US
dc.subject.keywordNaive Bayes classifieren_US
dc.subject.keywordPositive Predictive Valueen_US
dc.subject.keywordReceiver Operating Characteristicsen_US
dc.subject.keywordSupport Vector Machinesen_US
dc.description.notereference p90-101.en_US
dc.contributor.guideRamakrishnan Sen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d,en_US
dc.date.completed01/10/2009en_US
dc.date.awarded30/10/2009en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File42.28 kBAdobe PDFView/Open
02_certificate.pdf5.92 kBAdobe PDFView/Open
03_abstract.pdf8.37 kBAdobe PDFView/Open
04_acknowledgement.pdf7.22 kBAdobe PDFView/Open
05_content.pdf34.71 kBAdobe PDFView/Open
06_chapter1.pdf24.11 kBAdobe PDFView/Open
07_chapter2.pdf24.14 kBAdobe PDFView/Open
08_chapter3.pdf257.32 kBAdobe PDFView/Open
09_chapter4.pdf1.81 MBAdobe PDFView/Open
10_chapter5.pdf12.64 kBAdobe PDFView/Open
11_reference.pdf53.65 kBAdobe PDFView/Open
12_publication.pdf9.25 kBAdobe PDFView/Open
13_vitae.pdf5.51 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: