Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/306794
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialCustomized fuzzy rough quick reduct for attribute selection in microarray data
dc.date.accessioned2020-11-16T08:10:46Z-
dc.date.available2020-11-16T08:10:46Z-
dc.identifier.urihttp://hdl.handle.net/10603/306794-
dc.description.abstractAttribute selection has gained much of attention in recent years in the field of Bioinformatics Machine learning algorithms are used for the diagnosis and treatment of a number of diseases especially cancer which is considered to be one of the deadliest diseases the world over These algorithms aid in diagnosing the disease at an early stage thereby increasing the survival rate and reducing the mortality rate since traditional approach of diagnosis of the disease is time consuming and error prone due to human intervention The use of computer methods and algorithms to process microarray databases gains importance because of the rapid growth of the size of the database in recent years Microarray data consists of small sample of training and testing samples with high dimensionality All the attributes do not contribute to the cause of cancer The performance of the learning algorithm is deteriorated by the memory occupied by the high dimensional data that consists of a number of irrelevant attributes The main objective of this research work is to identify the informative genes and remove the redundant genes and thereby contribute to the increase in classification accuracy and the decrease in the number of attribute genes and computation time The key motivating factor of research in the area of attribute selection in microarray data is the high dimensionality of the datasets that suffer from the problems of curse of dimensionality. newline
dc.format.extentxxiv, p231.
dc.languageEnglish
dc.relationp.216-230.
dc.rightsuniversity
dc.titleCustomized fuzzy rough quick reduct for attribute selection in microarray data
dc.title.alternative
dc.creator.researcherArunkumar C
dc.subject.keywordEngineering and Technology
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Information Systems
dc.subject.keywordBioinformatics
dc.subject.keywordMachine learning
dc.subject.keywordMicroarray Databases
dc.description.note
dc.contributor.guideRamakrishnan S
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Information and Communication Engineering
dc.date.registered
dc.date.completed2019
dc.date.awarded2019
dc.format.dimensions21 cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File56.64 kBAdobe PDFView/Open
02_certificates.pdf23.87 MBAdobe PDFView/Open
03_abstracts.pdf124.44 kBAdobe PDFView/Open
04_acknowledgements.pdf186.71 kBAdobe PDFView/Open
05_contents.pdf26.68 MBAdobe PDFView/Open
06_list_of_tables.pdf26.68 MBAdobe PDFView/Open
07_list_of_figures.pdf26.68 MBAdobe PDFView/Open
08_list_of_abbreviations.pdf116.58 kBAdobe PDFView/Open
09_chapter1.pdf237.87 kBAdobe PDFView/Open
10_chapter2.pdf272.8 kBAdobe PDFView/Open
11_chapter3.pdf249.55 kBAdobe PDFView/Open
12_chapter4.pdf1.9 MBAdobe PDFView/Open
13_chapter5.pdf651.07 kBAdobe PDFView/Open
14_chpater6.pdf573.97 kBAdobe PDFView/Open
15_conclusion.pdf200.86 kBAdobe PDFView/Open
16_appendices.pdf196.37 kBAdobe PDFView/Open
17_references.pdf239.09 kBAdobe PDFView/Open
18_list_of_publications.pdf191.43 kBAdobe PDFView/Open
80_recommendation.pdf127.58 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: