Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/303962
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialMoving object detection and tracking based on fractional derivative and otsu thresholding
dc.date.accessioned2020-10-23T05:38:47Z-
dc.date.available2020-10-23T05:38:47Z-
dc.identifier.urihttp://hdl.handle.net/10603/303962-
dc.description.abstractObject detection and tracking in video surveillance is a challenging job due to the requirement of higher accuracy and efficiency in the presence of large volume of data The object detection attributes namely shape size colour velocity and the direction of the moving object can be incorporated in the object detection and tracking system The dynamic environmental conditions frequent changes in the motion of an object background intensity variations changes in colour and light illuminations appearance disparity occlusions etc are the main issues of object detection and tracking models A method is required to establish a threshold in a dynamic way with the consideration of pixel intensities of each frame Commonly used methods have been developed for deriving objects from the captured images and recorded videos works in an inhibited environment The major contribution presented in this thesis deals with markerless motion capturing spatiotemporal with color determination and fractional derivative based Otsu thresholding in typical object detection and tracking system The first part of the thesis deals with the Markerless Motion Capturing for Video Surveillance System MMCVS This model has been developed for optimal motion detection in a given video sequence. newline
dc.format.extentxvi,149p
dc.languageEnglish
dc.relationp.141-148
dc.rightsuniversity
dc.titleMoving object detection and tracking based on fractional derivative and otsu thresholding
dc.title.alternative
dc.creator.researcherSindhia L
dc.subject.keywordEngineering and Technology
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Information Systems
dc.subject.keywordObject detection
dc.subject.keywordMotion Capturing
dc.subject.keywordVideo surveillance
dc.description.note
dc.contributor.guideDhananjay Kumar
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Information and Communication Engineering
dc.date.registered
dc.date.completed2019
dc.date.awarded2019
dc.format.dimensions21cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File23.33 kBAdobe PDFView/Open
02_certificates.pdf779.85 kBAdobe PDFView/Open
03_abstracts.pdf7.13 kBAdobe PDFView/Open
04_acknowledgements.pdf4.77 kBAdobe PDFView/Open
05_contents.pdf10.07 kBAdobe PDFView/Open
06_list_of_tables.pdf3.99 kBAdobe PDFView/Open
07_list_of_figures.pdf6.7 kBAdobe PDFView/Open
08_list_of_abbreviations.pdf4.66 kBAdobe PDFView/Open
09_chapter1.pdf335.08 kBAdobe PDFView/Open
10_chapter2.pdf159.53 kBAdobe PDFView/Open
11_chapter3.pdf827.91 kBAdobe PDFView/Open
12_chapter4.pdf358.28 kBAdobe PDFView/Open
13_chapter5.pdf660.37 kBAdobe PDFView/Open
14_conclusion.pdf11.76 kBAdobe PDFView/Open
15_references.pdf27.09 kBAdobe PDFView/Open
16_list_of_publications.pdf9.43 kBAdobe PDFView/Open
80_recommendation.pdf278.35 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: