Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/303820
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialFeature selection and classification for gene expression data analysis
dc.date.accessioned2020-10-22T08:41:29Z-
dc.date.available2020-10-22T08:41:29Z-
dc.identifier.urihttp://hdl.handle.net/10603/303820-
dc.description.abstractIn recent years rapid developments in genomics and other biological research have generated a huge amount of biological data This data requires sophisticated computational analysis in order to interpret the data and to draw conclusions One of the most active areas of research in bioinformatics is the use of data mining techniques to solve biological problems Examples of biological analysis include protein structure prediction statistical modeling of protein protein interactions analysis of mutations and cancer classification based on microarray data This research employs data mining feature selection methods to discover the differentially expressed genes from gene expression microarray datasets for use in classification Microarrays are used to measure the expression levels of large numbers of genes simultaneously most of them are uninformative and redundant The sample sizes are very low relative to the number of genes which reduces the diagnosis accuracy of statistical models Thereby selecting highly significant genes from gene expression data improves the classification performance This thesis aims to identify a subset of genes that are relevant for model construction among a huge number of genes In this thesis two pre processing methods and two filter based feature selection techniques are proposed newline
dc.format.extentxviii,144p.
dc.languageEnglish
dc.relationp.135-143
dc.rightsuniversity
dc.titleFeature selection and classification for gene expression data analysis
dc.title.alternative
dc.creator.researcherPrema R
dc.subject.keywordEngineering and Technology
dc.subject.keywordEngineering
dc.subject.keywordEngineering Biomedical
dc.subject.keywordGenomics
dc.subject.keywordBiological data analysis
dc.subject.keywordClassification Microarrays
dc.description.note
dc.contributor.guidePremalatha K
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Information and Communication Engineering
dc.date.registeredn.d.
dc.date.completed2019
dc.date.awarded2019
dc.format.dimensions21cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File71.89 kBAdobe PDFView/Open
02_certificates.pdf1.33 MBAdobe PDFView/Open
03_abstracts.pdf37.06 kBAdobe PDFView/Open
04_acknowledgements.pdf21.61 kBAdobe PDFView/Open
05_contents.pdf27.19 kBAdobe PDFView/Open
06_list_of_tables.pdf36 kBAdobe PDFView/Open
07_list_of_figures.pdf28.63 kBAdobe PDFView/Open
08_list_of_abbreviations.pdf23.1 kBAdobe PDFView/Open
09_chapter1.pdf612.33 kBAdobe PDFView/Open
10_chapter2.pdf195.17 kBAdobe PDFView/Open
11_chapter3.pdf4.69 MBAdobe PDFView/Open
12_chapter4.pdf1.23 MBAdobe PDFView/Open
13_chapter5.pdf489.43 kBAdobe PDFView/Open
14_chapter6.pdf1.14 MBAdobe PDFView/Open
15_conclusion.pdf90.68 kBAdobe PDFView/Open
16_references.pdf90.92 kBAdobe PDFView/Open
17_list_of_publications.pdf53.94 kBAdobe PDFView/Open
80_recommendation.pdf156.9 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: