Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/303213
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialRough set enabled classifiers for uncertain data
dc.date.accessioned2020-10-19T04:54:25Z-
dc.date.available2020-10-19T04:54:25Z-
dc.identifier.urihttp://hdl.handle.net/10603/303213-
dc.description.abstractUncertainty in real world data makes the available knowledge imperfect and reduces the efficiency of any data mining or decision making task Particularly in decision making systems that involve multiple categories or decision classes uncertainty arises when the input pattern is ambiguous and when the classes are overlapping or ill defined Existing classifiers that partake extensively in many real world applications lack intelligence in handling these uncertain small sample sized and inconsistent data sets Hence there is a need for an intelligent classification system that perform well despite the occurrence of uncertainties This thesis work makes an attempt to build intelligent classifiers that address uncertainty issues Initially a study and analysis of uncertainty in some data sets was carried out using some data mining techniques Taking cues from this this research work goes on to build classifiers that handle rough and fuzzy uncertainties in the data sets. newline
dc.format.extentxviii,150p
dc.languageEnglish
dc.relationp.141-149
dc.rightsuniversity
dc.titleRough set enabled classifiers for uncertain data
dc.title.alternative
dc.creator.researcherSheeba Santha Kumari M
dc.subject.keywordEngineering and Technology
dc.subject.keywordComputer Science
dc.subject.keywordComputer Science Information Systems
dc.subject.keywordUncertain data
dc.subject.keywordDecision making
dc.subject.keywordData mining techniques
dc.description.note
dc.contributor.guideShanthi A P
dc.publisher.placeChennai
dc.publisher.universityAnna University
dc.publisher.institutionFaculty of Information and Communication Engineering
dc.date.registered
dc.date.completed2019
dc.date.awarded2019
dc.format.dimensions21cm
dc.format.accompanyingmaterialNone
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File22.83 kBAdobe PDFView/Open
02_certificates.pdf535.82 kBAdobe PDFView/Open
03_abstracts.pdf57.21 kBAdobe PDFView/Open
04_acknowledgements.pdf4.23 kBAdobe PDFView/Open
05_contents.pdf59.15 kBAdobe PDFView/Open
06_list_of_tables.pdf6.11 kBAdobe PDFView/Open
07_list_of_figures.pdf4.99 kBAdobe PDFView/Open
08_list_of_abbreviations.pdf57.15 kBAdobe PDFView/Open
09_chapter1.pdf136.78 kBAdobe PDFView/Open
10_chapter2.pdf46.16 kBAdobe PDFView/Open
11_chapter3.pdf172.95 kBAdobe PDFView/Open
12_chapter4.pdf163.38 kBAdobe PDFView/Open
13_chapter5.pdf252.92 kBAdobe PDFView/Open
14_chapter6.pdf153.87 kBAdobe PDFView/Open
15_conclusion.pdf73.14 kBAdobe PDFView/Open
16_references.pdf36.26 kBAdobe PDFView/Open
17_list_of_publications.pdf16.2 kBAdobe PDFView/Open
80_recommendation.pdf104.33 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: