Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/29892
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialIntelligent techniques for system Identification and controller tuningen_US
dc.date.accessioned2014-12-03T09:20:50Z-
dc.date.available2014-12-03T09:20:50Z-
dc.date.issued2014-12-03-
dc.identifier.urihttp://hdl.handle.net/10603/29892-
dc.description.abstractProportional Integral Derivative PID controller has been widely newlineused in the process industry for many years Tuning of PID controller newlineparameters is necessary for the satisfactory operation of the process In the newlinecommonly used Ziegler Nichols ZN and Cohen Coon CC methods the newlineparameters of the controller are obtained for an operating point where the newlinemodel can be considered linear Internal Model Control IMC overcomes newlinethis problem but its design calculations could be complicated for higher newlineorder process In general plant parameters change due to ageing of the plant or newlinechanges in the load Also the process non linearities and time dependent newlinecharacteristics cause a significant change in the dynamic parameters of the newlineprocess which necessitates identification of the process model at different newlineoperating conditions so that controller design can be effected The newlineconventional parameter identification methods namely least squares and newlinemaximum likelihood method often fail in the search for global optimum in newlinethe search space Further they require large set of input output data from newlinethe system Intelligent techniques overcome the difficulties and limitations newlineencountered by the conventional approaches for system identification and newlinecontroller tuning newline newlineen_US
dc.format.extentxxiii, 134p.en_US
dc.languageEnglishen_US
dc.relationp122-130.en_US
dc.rightsuniversityen_US
dc.titleIntelligent techniques for system Identification and controller tuningen_US
dc.title.alternativeen_US
dc.creator.researcherValarmathi Ken_US
dc.subject.keywordCohen Coonen_US
dc.subject.keywordInternal Model Controlen_US
dc.subject.keywordProportional Integral Derivativeen_US
dc.subject.keywordZiegler Nicholsen_US
dc.description.noteappendix p116-121, reference p122-130.en_US
dc.contributor.guideDevaraj Den_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d,en_US
dc.date.completed01/03/2008en_US
dc.date.awarded30/03/2008en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File40.54 kBAdobe PDFView/Open
02_certificate.pdf5.95 kBAdobe PDFView/Open
03_abstract.pdf10.38 kBAdobe PDFView/Open
04_acknowledgement.pdf4.61 kBAdobe PDFView/Open
05_content.pdf85.86 kBAdobe PDFView/Open
06_chapter1.pdf24.61 kBAdobe PDFView/Open
07_chapter2.pdf60.25 kBAdobe PDFView/Open
08_chapter3.pdf66.2 kBAdobe PDFView/Open
09_chapter4.pdf804.78 kBAdobe PDFView/Open
10_chapter5.pdf218.17 kBAdobe PDFView/Open
11_chapter6.pdf436.27 kBAdobe PDFView/Open
12_chapter7.pdf240.89 kBAdobe PDFView/Open
13_chapter8.pdf18.97 kBAdobe PDFView/Open
14_appendix.pdf78.99 kBAdobe PDFView/Open
15_reference.pdf34.81 kBAdobe PDFView/Open
16_publication.pdf13.85 kBAdobe PDFView/Open
17_vitae.pdf6.23 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

Altmetric Badge: