Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/29045
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialPredicting the ultimate failure load Of composite hardware using Artificial neural network and Acoustic emission dataen_US
dc.date.accessioned2014-11-26T08:00:33Z-
dc.date.available2014-11-26T08:00:33Z-
dc.date.issued2014-11-26-
dc.identifier.urihttp://hdl.handle.net/10603/29045-
dc.description.abstractProof testing of composite structures is complicated by the fact that newlinemost composite structures do not exhibit the same elastic plastic behaviour newlinefound in metal structures Excluding macroscopic discontinuities as long as newlinethe stress is kept below the yield point there is little plastic deformation and newlinetherefore no noticeable degradation in the structural integrity of metal newlinestructures This phenomenon does not hold true for fiber matrix composites newlinein which the structural integrity begins to degrade as soon as the fibers begin newlineto break The common proof testing loads of 70 80 percent of the expected newlinefracture strength used on a metal design can cause significant fiber failures in newlinecomposite structures thereby degrading its structural integrity In order to newlineavoid this a procedure needs to be adopted that uses reasonably lower proof newlineloading for composites and that would also accurately determine the ultimate newlinestrength of the structure Acoustic Emission AE study is a high sensitivity nondestructive newlinetesting technique for detecting active microscopic events in a material newlineAcoustic emission signals collected from composite hardware during proof newlinetesting were interpreted with an Artificial Neural Network ANN and the newlineultimate failure strength was predicted The experimental research was started newlinewith the failure strength prediction attempt on composite tensile coupons newlineSubsequently the same methodology was followed to a burst pressure newlineprediction on Glass Fiber Reinforced Plastic GFRP pressure vessels newline newlineen_US
dc.format.extentxx, 170p.en_US
dc.languageEnglishen_US
dc.relationp159-167.en_US
dc.rightsuniversityen_US
dc.titlePredicting the ultimate failure load Of composite hardware using Artificial neural network and Acoustic emission dataen_US
dc.title.alternativeen_US
dc.creator.researcherSasikumar Ten_US
dc.subject.keywordAcoustic Emissionen_US
dc.subject.keywordArtificial neural networken_US
dc.subject.keywordGlass Fiber Reinforced Plasticen_US
dc.description.noteappendix p147-158, reference p159-167.en_US
dc.contributor.guideRajendra boopathy Sen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Mechanical Engineeringen_US
dc.date.registeredn.d,en_US
dc.date.completed01/05/2009en_US
dc.date.awarded30/05/2009en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Mechanical Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File121.3 kBAdobe PDFView/Open
02_certificate.pdf5.86 kBAdobe PDFView/Open
03_abstract.pdf12.56 kBAdobe PDFView/Open
04_acknowledgement.pdf7.05 kBAdobe PDFView/Open
05_content.pdf70.72 kBAdobe PDFView/Open
06_chapter1.pdf326.99 kBAdobe PDFView/Open
07_chapter2.pdf270.31 kBAdobe PDFView/Open
08_chapter3.pdf1.75 MBAdobe PDFView/Open
09_chapter4.pdf1.13 MBAdobe PDFView/Open
10_chapter5.pdf2.5 MBAdobe PDFView/Open
11_chapter6.pdf211.56 kBAdobe PDFView/Open
12_chapter7.pdf16.93 kBAdobe PDFView/Open
13_appendix.pdf48.3 kBAdobe PDFView/Open
14_reference.pdf45.3 kBAdobe PDFView/Open
15_publication.pdf10.58 kBAdobe PDFView/Open
16_vitae.pdf6.73 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: