Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/29039
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialTexture image classification and its Applications using multi resolution Combined statistical and spatial Frequency methoden_US
dc.date.accessioned2014-11-26T07:59:35Z-
dc.date.available2014-11-26T07:59:35Z-
dc.date.issued2014-11-26-
dc.identifier.urihttp://hdl.handle.net/10603/29039-
dc.description.abstractTexture Analysis has been an extremely active and fruitful area of newlineresearch over the past twenty years Today texture analysis plays an important newlinerole in many tasks ranging from remote sensing to medical image analysis newlineThe main difficulty of texture analysis method was the lack of tools to newlineanalyze different characteristics of texture images Texture analysis is broadly newlineclassified as texture classification texture segmentation texture synthesis and newlineshape recovery from textures newlineAmong the above texture classification is a trendy and catchy newlinetechnology in the field of texture analysis Texture classification is important newlinein many applications like image database retrieval industrial agricultural and newlinebio medical applications Texture classification is based on three different newlineapproaches they are statistical spectral and structural newlineStatistical approaches are based on statistical properties in gray newlinelevel of the image Statistical approaches include first order statistical newlineproperties like spatial texture energy texture mean texture variance second newlineorder statistical properties like autocorrelation function Gray Level newlineCo occurrence Matrix GLCM Markov Random Field Matrix MRFM newlineen_US
dc.format.extentxxi, 161p.en_US
dc.languageEnglishen_US
dc.relationp146-152.en_US
dc.rightsuniversityen_US
dc.titleTexture image classification and its Applications using multi resolution Combined statistical and spatial Frequency methoden_US
dc.title.alternativeen_US
dc.creator.researcherSabeenian R Sen_US
dc.subject.keywordGray Level Co occurrence Matrixen_US
dc.subject.keywordMarkov Random Field Matrixen_US
dc.description.notereference p146-152.en_US
dc.contributor.guidePalanisamyVen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d,en_US
dc.date.completed01/05/2009en_US
dc.date.awarded30/05/2009en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File15.57 kBAdobe PDFView/Open
02_certificate.pdf5.78 kBAdobe PDFView/Open
03_abstract.pdf12.84 kBAdobe PDFView/Open
04_acknowledgement.pdf7.18 kBAdobe PDFView/Open
05_content.pdf38.92 kBAdobe PDFView/Open
06_chapter1.pdf295.68 kBAdobe PDFView/Open
07_chapter2.pdf23.93 MBAdobe PDFView/Open
08_chapter3.pdf218.96 kBAdobe PDFView/Open
09_chapter4.pdf579.73 kBAdobe PDFView/Open
10_chapter5.pdf223.8 kBAdobe PDFView/Open
11_chapter6.pdf984.92 kBAdobe PDFView/Open
12_chapter7.pdf5.53 MBAdobe PDFView/Open
13_chapter8.pdf10.93 kBAdobe PDFView/Open
14_reference.pdf33.86 kBAdobe PDFView/Open
15_publication.pdf11.13 kBAdobe PDFView/Open
16_vitae.pdf6.89 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: