Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/28256
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialPrediction and classification of Human respiratory functions using Flow volume spirometry and radial Basis function neural networksen_US
dc.date.accessioned2014-11-19T11:02:56Z-
dc.date.available2014-11-19T11:02:56Z-
dc.date.issued2014-11-19-
dc.identifier.urihttp://hdl.handle.net/10603/28256-
dc.description.abstractIn this work analysis on respiratory mechanics using flow volume newlinespirometry and radial basis function neural network is reported The newlinepulmonary function test using spirometer was recorded from subjects under newlinestudy as per recommended recording protocol The prediction of newlineForced Expiratory Volume in one second FEV was carried out using newlineBackpropagation neural networks Radial Basis Function RBF networks and newlineSelf Organizing Map SOM The SOM generates a set of prototype vectors newlinewhich represent input vector space values These prototypes were used to newlinecreate radial basis function centers The performance of the neural network newlinemodel was evaluated by computing their prediction error statistics of average newlinevalue, standard deviation root mean square and their correlation with the true newlinedata for normal restrictive and obstructive cases Results show that the adopted newline neural networks are capable of predicting FEV1 in both normal and abnormal cases newlinePrediction accuracy was more in obstructive abnormality when compared to restrictive cases newlineThe spirometric data along with the predicted values of FEV1 were used for newlineclassification of normal restrictive and obstructive abnormalities using newlineCombined Neural Networks CNN newline newlineen_US
dc.format.extentxiv, 82p.en_US
dc.languageEnglishen_US
dc.relationp69-80.en_US
dc.rightsuniversityen_US
dc.titlePrediction and classification of Human respiratory functions using Flow volume spirometry and radial Basis function neural networksen_US
dc.title.alternativeen_US
dc.creator.researcherSujatha C Men_US
dc.subject.keywordCombined Neural Networksen_US
dc.subject.keywordForced Expiratory Volumeen_US
dc.subject.keywordRadial Basis Functionen_US
dc.subject.keywordSelf Organizing Mapen_US
dc.description.notereference p69-80.en_US
dc.contributor.guideRamakrishnan Sen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d,en_US
dc.date.completed01/08/2008en_US
dc.date.awarded30/08/2008en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File12.98 kBAdobe PDFView/Open
02_certificate.pdf5.99 kBAdobe PDFView/Open
03_abstract.pdf7.86 kBAdobe PDFView/Open
04_acknowledgement.pdf7.2 kBAdobe PDFView/Open
05_content.pdf21.24 kBAdobe PDFView/Open
06_chapter1.pdf26.9 kBAdobe PDFView/Open
07_chapter2.pdf45.52 kBAdobe PDFView/Open
08_chapter3.pdf174.86 kBAdobe PDFView/Open
09_chapter4.pdf196.4 kBAdobe PDFView/Open
10_chapter5.pdf12.19 kBAdobe PDFView/Open
11_chapter6.pdf6.57 kBAdobe PDFView/Open
12_reference.pdf49.27 kBAdobe PDFView/Open
13_publication.pdf6.63 kBAdobe PDFView/Open
14_vitae.pdf5.45 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: