Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/26360
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialMechanical Engineeringen_US
dc.date.accessioned2014-10-08T06:25:38Z-
dc.date.available2014-10-08T06:25:38Z-
dc.date.issued2014-10-08-
dc.identifier.urihttp://hdl.handle.net/10603/26360-
dc.description.abstractUltrasound based inspection techniques are used extensively newlinethroughout industry for detection of flaws in engineering materials The newlineprincipal goal for ultrasonic inspection of engineering materials is the newlinedetection location and classification of internal flaws and defects as quickly newlineand as accurately as possible However this non destructive testing process is newlineoften difficult and time consuming and may well rely significantly on the skill newlineand experience of the tester The combination of the human eye and brain is newlineuniquely capable after training of classifying a wide range and variety of newlinecomplex patterns Performance is however subject to significant variation as a newlineresult of factors such as fatigue and loss of concentration newline newlineen_US
dc.format.extentxxii,185p.en_US
dc.languageEnglishen_US
dc.relation-en_US
dc.rightsuniversityen_US
dc.titleWeldment defect detection and classification in ultrasonic testing using artificial intelligenceen_US
dc.title.alternative-en_US
dc.creator.researcherSambath, Sen_US
dc.subject.keywordartificial intelligenceen_US
dc.subject.keywordmechanical engineeringen_US
dc.subject.keywordultrasonic testingen_US
dc.description.noteReference p.174-183en_US
dc.contributor.guideNagaraj, Pen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Mechanical Engineeringen_US
dc.date.registeredn.d.en_US
dc.date.completed01/06/2010en_US
dc.date.awarded30/06/2010en_US
dc.format.dimensions23cmen_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Mechanical Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File26.47 kBAdobe PDFView/Open
02_certificates.pdf933.9 kBAdobe PDFView/Open
03_abstract.pdf10.39 kBAdobe PDFView/Open
04_acknowledgement.pdf6.79 kBAdobe PDFView/Open
05_contents.pdf28.58 kBAdobe PDFView/Open
06_chapter 1.pdf29.76 kBAdobe PDFView/Open
07_chapter 2.pdf41.72 kBAdobe PDFView/Open
08_chapter 3.pdf401.03 kBAdobe PDFView/Open
09_chapter 4.pdf210.02 kBAdobe PDFView/Open
10_chapter 5.pdf348.56 kBAdobe PDFView/Open
11_chapter 6.pdf651.61 kBAdobe PDFView/Open
12_chapter 7.pdf2.3 MBAdobe PDFView/Open
13_chapter 8.pdf701.54 kBAdobe PDFView/Open
14_chapter 9.pdf51.07 kBAdobe PDFView/Open
15_chapter 10.pdf8.39 kBAdobe PDFView/Open
16_appendix.pdf519.27 kBAdobe PDFView/Open
17_references.pdf36.49 kBAdobe PDFView/Open
18_publications.pdf6.44 kBAdobe PDFView/Open
19_vitae.pdf5.73 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: