Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/25398
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialphysicsen_US
dc.date.accessioned2014-09-22T12:26:58Z-
dc.date.available2014-09-22T12:26:58Z-
dc.date.issued2014-09-22-
dc.identifier.urihttp://hdl.handle.net/10603/25398-
dc.description.abstractThe present thesis is devoted to the identification of bright solitons newlinein BoseEinstein Condensates by analytically and numerically solving the newlineGrossPitaevskii equation which give rise to bright dark and grey solitons newlineThese three types of solitons are localized excitations normally associated newlinewith integrable dynamical systems exhibiting fascinating collisional newlinedynamics Study of these collisional dynamics besides their transmission and newlineinteraction can be suitably exploited to get a better understanding of the newlinedynamical system under consideration Thus the aim of undertaking the newlinepresent thesis is three fold namely newlineTo apply an analytical technique to solve the nonlinear partial newlinedifferential equation namely the GrossPitaevskii equation newlineand to gain an understanding of the BoseEinstein newlineCondensate Among several analytical tools for solving newlinenonlinear problems in BoseEinstein Condensates like newlineinverse scattering transform Painleve analysis and gauge newlinetransformation we chose the Darboux transformation newlinetechnique Darboux transformation along with the Lax newlinetechnique is a natural choice due to its systematic and simple newlinealgebraic algorithm compared to the other methods available newlinein research literature newlineTo investigate the numerical tools for solving the same newlinenonlinear problems We took up three different numerical newlinemethods namely the SplitStep Fourier Method Crank newlineNicolson Finite Difference Method and the SplitStep Crank newlineNicolson Method already available in the literature in order to newlinecompare the merits and demerits of each technique newlineFinally to provide data to the experimentalists on the ideal newlineconditions for creation of various types of solitons we newlineperformed realistic numerical simulations on our theoretical newlinemodel of the BoseEinstein condensate newlineThis thesis is organized into six chapters The first chapter newlineprovides a general overview of the BoseEinstein Condensates and the Gross newlinePitaevskii equation which is the theoretical model to study the properties of a newlineBEC in the mean field regime newline newlineen_US
dc.format.extentxix,161p.en_US
dc.languageEnglishen_US
dc.relation69en_US
dc.rightsuniversityen_US
dc.titleTheoretical investigation of solitons in bose einstein condensatesen_US
dc.title.alternative-en_US
dc.creator.researcherGayathree, Mohanen_US
dc.subject.keywordBose Einsteinen_US
dc.subject.keywordCondensatesen_US
dc.subject.keywordGrossPitaevskii equationen_US
dc.subject.keywordPainleve analysisen_US
dc.subject.keywordSolitonsen_US
dc.description.note-en_US
dc.contributor.guideMahalingam, Aen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Science and Humanitiesen_US
dc.date.registeredn.d.en_US
dc.date.completedn.d.en_US
dc.date.awarded2013en_US
dc.format.dimensions28 cmen_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Science and Humanities

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File166.01 kBAdobe PDFView/Open
02_certificate.pdf2.43 MBAdobe PDFView/Open
03_abstract.pdf62.84 kBAdobe PDFView/Open
04_acknowledgement.pdf61.17 kBAdobe PDFView/Open
05_contents.pdf124.09 kBAdobe PDFView/Open
06_chapter 1.pdf1.08 MBAdobe PDFView/Open
07_chapter 2.pdf310.56 kBAdobe PDFView/Open
08_chapter 3.pdf1.27 MBAdobe PDFView/Open
09_chapter 4.pdf900.92 kBAdobe PDFView/Open
10_chapter 5.pdf762.93 kBAdobe PDFView/Open
11_chapter 6.pdf77.33 kBAdobe PDFView/Open
12_appendix.pdf110.68 kBAdobe PDFView/Open
13_references.pdf96.29 kBAdobe PDFView/Open
14_publications.pdf61.76 kBAdobe PDFView/Open
15_vitae.pdf59.52 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: