Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/25320
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialInformation and Communication Engineeringen_US
dc.date.accessioned2014-09-22T09:29:55Z-
dc.date.available2014-09-22T09:29:55Z-
dc.date.issued2014-09-22-
dc.identifier.urihttp://hdl.handle.net/10603/25320-
dc.description.abstractMagnetic resonance imaging MRI is a powerful medical imaging newlinemodality to produce high resolution images with good contrast of the newlinedifferent biological soft tissue types As a non invasive technique the large newlinequantity of data provided by MRI for brain imaging in particular aids newlinestatisticians and medical professionals in disease diagnosis and functional newlineunderstanding of the human brain In particular interest to this study is the newlineclassification of three main tissue types in the brain Gray Matter GM newlineWhite Matter WM and CerebroSpinal Fluid CSF and the segmentation of newlinemagnetic resonance images in patients with gliomas newlinePathological regions from MRI scans of normal adults and patients newlinewith neuro degenerative diseases are needed for improved understanding of newlinedisease progression in vivo As images are often confounded by acquisition newlinenoise and partial volume effects developing an automatic robust and newlineefficient segmentation is essential to the accurate quantification of disease newlineseverity A major challenge of this work is to devise robust techniques to newlineaddress the above said problems newline newlineen_US
dc.format.extentxxxviii, 289p.en_US
dc.languageEnglishen_US
dc.relation-en_US
dc.rightsuniversityen_US
dc.titleSegmentation and classification of brain mri using deformable, statistical And knowledge based approaches with Fft techniquesen_US
dc.title.alternative-en_US
dc.creator.researcherRajeswari, Ren_US
dc.subject.keywordCerebroSpinal Fluiden_US
dc.subject.keywordMagnetic resonance imagingen_US
dc.subject.keywordPathological regionsen_US
dc.subject.keywordWhite Matteren_US
dc.description.noteappendix p238-259, reference p260-286.en_US
dc.contributor.guideAnandhakumar, Pen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d,en_US
dc.date.completed01-06-2012en_US
dc.date.awarded30-06-2012en_US
dc.format.dimensions23cmen_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File23.37 kBAdobe PDFView/Open
02_certificate.pdf1.01 MBAdobe PDFView/Open
03_abstract.pdf13.25 kBAdobe PDFView/Open
04_acknowledgement.pdf6.79 kBAdobe PDFView/Open
05_content.pdf91.92 kBAdobe PDFView/Open
06_chapter1.pdf1.12 MBAdobe PDFView/Open
07_chapter2.pdf123.92 kBAdobe PDFView/Open
08_chapter3.pdf1.52 MBAdobe PDFView/Open
09_chapter4.pdf3 MBAdobe PDFView/Open
10_chapter5.pdf997.54 kBAdobe PDFView/Open
11_chapter6.pdf1.31 MBAdobe PDFView/Open
12_chapter7.pdf33.46 kBAdobe PDFView/Open
13_appendix.pdf1.57 MBAdobe PDFView/Open
14_reference.pdf95.22 kBAdobe PDFView/Open
15_publication.pdf8.05 kBAdobe PDFView/Open
16_vitae.pdf5.75 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: