Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/24769
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialInformation and Communication Engineeringen_US
dc.date.accessioned2014-09-08T10:08:09Z-
dc.date.available2014-09-08T10:08:09Z-
dc.date.issued2014-09-08-
dc.identifier.urihttp://hdl.handle.net/10603/24769-
dc.description.abstractNonlinear time series prediction has been a challenging task and important area of research in all branches of science and technology Though several techniques are used for the pattern prediction problem identifying unknown valid information such as patterns and relationships from large time series databases is difficult due to the presence of noise high dimensionality and non stationarity The temporal behavior of the time series data makes it difficult for direct usage in the application Clustering related items together is used to find similarity in the behavior of time series data High dimensionality newlineand the presence of noise in the nonlinear time series data makes it difficult for the existing clustering algorithms to produce efficient results Therefore a time series representation that takes into account the internal structure of the time series data is essential Hence two time series representations by name Hybrid Dimensionality Reduction Extended Hybrid Dimensionality Reduction and High Low Non overlapping newlineclustering algorithm are proposed in the first work The proposed works produce efficient results by controlling noise and reducing the dimensionality optimally The experimentation was carried out on intraday nonlinear stock datasets to predict the similarity in their intraday behavior A comparison of the experimental results using K means clustering algorithm with Euclidean and minimum distance distance measures using Discrete Wavelet Transform and Symbolic Aggregate approXimation newlinerespectively and HLN using HDR and EHDR has proved that EHDR and HDR TSRs outperforms the other model newline newlineen_US
dc.format.extentxxii, 178p.en_US
dc.languageEnglishen_US
dc.relation-en_US
dc.rightsuniversityen_US
dc.titleAnalysis of certain nonlinear time series systems using soft computing techniquesen_US
dc.title.alternative-en_US
dc.creator.researcherUma, Sen_US
dc.subject.keywordDiscrete Wavelet Transformen_US
dc.subject.keywordExtended Hybrid Dimensionality Reductionen_US
dc.subject.keywordHigh Low Non-overlappingen_US
dc.subject.keywordHybrid Dimensionality Reductionen_US
dc.subject.keywordInformation and communication engineeringen_US
dc.subject.keywordNonlinear time series systemen_US
dc.subject.keywordSoft computing techniquesen_US
dc.description.noteReferences p.164-176en_US
dc.contributor.guideSuganthi, Jen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d.en_US
dc.date.completed01/09/2013en_US
dc.date.awarded30/09/2013en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File17.24 kBAdobe PDFView/Open
02_certificate.pdf848.28 kBAdobe PDFView/Open
03_abstract.pdf27.83 kBAdobe PDFView/Open
04_acknowledgement.pdf9.44 kBAdobe PDFView/Open
05_contents.pdf65.88 kBAdobe PDFView/Open
06_chapter1.pdf84.63 kBAdobe PDFView/Open
07_chapter2.pdf854.26 kBAdobe PDFView/Open
08_chapter3.pdf737.93 kBAdobe PDFView/Open
09_chapter4.pdf767 kBAdobe PDFView/Open
10_chapter5.pdf292.22 kBAdobe PDFView/Open
11_chapter6.pdf806.45 kBAdobe PDFView/Open
12_chapter7.pdf34.82 kBAdobe PDFView/Open
13_references.pdf232.22 kBAdobe PDFView/Open
14_publications.pdf13.46 kBAdobe PDFView/Open
15_vitae.pdf6.92 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: