Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/24089
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialAutomated analysis on enhancing the diagnostic relevance of Tuberculosis images using Image processing and Artificial intelligenceen_US
dc.date.accessioned2014-08-26T05:28:05Z-
dc.date.available2014-08-26T05:28:05Z-
dc.date.issued2014-08-26-
dc.identifier.urihttp://hdl.handle.net/10603/24089-
dc.description.abstractTuberculosis is a communicable disease for which an early diagnosis is essential to control the disease The microscopy based TB screening is the conventional method employed for TB identification and provides significant benefit to large number of TB burdened communities across the globe Manual screening using microscope is tedious and requires highly trained experts Besides huge variability in sensitivity manual newlinescreening for the identification of disease causing agent is a labor intensive task Further it is time consuming and depends on patient s level of infection and requires large number of images to be analyzed in one slide Hence there is a need to automate the diagnostic process to improve the sensitivity and accuracy of the test The sputum smear positive and negative images recorded under standard image acquisition protocol are considered for this work The non uniform illumination in microscopic digital TB images due to light source optics and camera noise degrades the visual perception of these newlineimages In this work pre processing step to correct the non uniform illumination using retrospective techniques such as Surface Fitting Method Multiple Regression Method and Bidirectional Empirical Mode Decomposition has been attempted The most appropriate illumination correction method is evaluated by calculating the error and newlinestatistical measures Multifractal analysis that describes both local and global pixel distribution in an image is performed to further validate the methods newline newlineen_US
dc.format.extentxxiv, 183p.en_US
dc.languageEnglishen_US
dc.relationp.162-181.en_US
dc.rightsuniversityen_US
dc.titleAutomated analysis on enhancing the diagnostic relevance of tuberculosis images using image processing and artificial intelligenceen_US
dc.title.alternativeen_US
dc.creator.researcherPriya Een_US
dc.subject.keywordArtificial intelligenceen_US
dc.subject.keywordImage processingen_US
dc.subject.keywordInformation and communication engineeringen_US
dc.subject.keywordTuberculosis imagesen_US
dc.description.noteReferences p.162-181,en_US
dc.contributor.guideSrinivasan Sen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d.en_US
dc.date.completed01/11/2013en_US
dc.date.awarded30/11/2013en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File608.7 kBAdobe PDFView/Open
02_abstract.pdf9.36 kBAdobe PDFView/Open
03_acknowledgement.pdf6.49 kBAdobe PDFView/Open
04_content.pdf58.05 kBAdobe PDFView/Open
05_chapter1.pdf79.23 kBAdobe PDFView/Open
06_chapter2.pdf85.7 kBAdobe PDFView/Open
07_chapter3.pdf583.69 kBAdobe PDFView/Open
08_chapter4.pdf2.52 MBAdobe PDFView/Open
09_chapter5.pdf17.83 kBAdobe PDFView/Open
10_references.pdf72.72 kBAdobe PDFView/Open
11_publicatiions.pdf6.56 kBAdobe PDFView/Open
12_vitae.pdf5.44 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: