Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/23914
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialCertain investigations on swarm intelligence based algorithms for performance enhancement in grid task schedulingen_US
dc.date.accessioned2014-08-22T08:44:13Z-
dc.date.available2014-08-22T08:44:13Z-
dc.date.issued2014-08-22-
dc.identifier.urihttp://hdl.handle.net/10603/23914-
dc.description.abstractGrid computing is an emerging field for the next generation parallel and distributed computing platform for solving large scale computational and data intensive problems in science engineering and commerce It enables sharing selection and aggregation of a wide variety of geographically distributed resources including supercomputers databases data sources and specialized devices owned by different organizations Authentication newlineauthorization secure and reliable file transfer distributed storage management and resource scheduling across organizational boundaries are the list of problems that need to be solved in grid computing Grid users need not be aware of the computational resources that are used for executing their applications and storing their data Adaptive resource management and scheduling are the present technical challenges in the grid Another newlinechallenging task of grid computing is failure handling in grid scheduling The main objective of grid scheduling is to find a feasible schedule that minimizes the make span e completion time required to finish all tasks in the job pool In recent years much attention has been given to solve the grid scheduling problem by using heuristic approaches such as Ant Colony Optimization local search tabu search genetic and Particle Swarm Optimization algorithms newline newlineen_US
dc.format.extentxxii, 168p.en_US
dc.languageEnglishen_US
dc.relationp.153-165.en_US
dc.rightsuniversityen_US
dc.titleCertain investigations on swarm intelligence based algorithms for performance enhancement in grid task schedulingen_US
dc.title.alternativeen_US
dc.creator.researcherNithya L Men_US
dc.subject.keywordAnt Colony Optimizationen_US
dc.subject.keywordGrid computingen_US
dc.subject.keywordInformation and communication engineeringen_US
dc.subject.keywordParticle Swarm Optimizationen_US
dc.description.noteReferences p.153-165,en_US
dc.contributor.guideShanmugam Aen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d.en_US
dc.date.completed01/12/2012en_US
dc.date.awarded30/12/2012en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File26.11 kBAdobe PDFView/Open
02_certificate.pdf1.02 MBAdobe PDFView/Open
03_abstract.pdf13.15 kBAdobe PDFView/Open
04_acknowledement.pdf6.44 kBAdobe PDFView/Open
05_contents.pdf35.85 kBAdobe PDFView/Open
06_chapter1.pdf107.83 kBAdobe PDFView/Open
07_chapter2.pdf145.67 kBAdobe PDFView/Open
08_chapter3.pdf817.04 kBAdobe PDFView/Open
09_chapter4.pdf99.08 kBAdobe PDFView/Open
10_chapter5.pdf99.03 kBAdobe PDFView/Open
11_chapter6.pdf173.95 kBAdobe PDFView/Open
12_chapter7.pdf16.23 kBAdobe PDFView/Open
13_references.pdf44.4 kBAdobe PDFView/Open
14_publications.pdf8.63 kBAdobe PDFView/Open
15_vitae.pdf6.15 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: