Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/23625
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialen_US
dc.date.accessioned2014-08-21T06:08:46Z-
dc.date.available2014-08-21T06:08:46Z-
dc.date.issued2014-08-21-
dc.identifier.urihttp://hdl.handle.net/10603/23625-
dc.description.abstractnewlineKnowledge discovery in databases is the non trivial process of identifying valid novel potentially useful and ultimately understandable patterns from dataThe term Data mining refers to the process which does the exploratory analysis on the data and builds some model on the dataTo infer patterns from data data mining involves different approaches like association rule mining, classification techniques or clustering techniques Among the many data mining techniques clustering plays a major role since it helps to group the related data for assessing properties and drawing conclusionsMost of the clustering algorithms act on a dataset with uniform format since the similarity or dissimilarity between the data points is a significant factor in finding out the clusters If a dataset consists of mixed attributes a combination of numerical and categorical variables a preferred approach is to convert different formats into a uniform format The research study explores the various techniques to convert the mixed data sets to a numerical equivalentso as to make it equipped for applying the statistical and similar algorithmsThe results of clustering mixed category data after conversion to numeric data type have been demonstrated using a crime data set The thesis also proposes an extension to the well known algorithm for handling mixed data types to deal with data sets having only categorical data The proposed conversion has been validated on a data set corresponding to breast cancer Moreover, another issue with the clustering process is the visualization of output Different geometric techniques like scatter plot or projection plots are available but none of the techniques display the result projecting the whole database but rather demonstrate attribute pair wise analysis newline newlineen_US
dc.format.extenten_US
dc.languageEnglishen_US
dc.relationen_US
dc.rightsuniversityen_US
dc.titleDevelopment of Hierarchical Clustering Techniques for Gridded Data from Mixed Data Sequencesen_US
dc.title.alternativeen_US
dc.creator.researcherBindiya Varghese Men_US
dc.subject.keywordData mining Approachesen_US
dc.subject.keywordKnowledge discoveryen_US
dc.subject.keywordMachine learningen_US
dc.subject.keywordNeural network based algorithmsen_US
dc.subject.keywordRegressionen_US
dc.description.noteen_US
dc.contributor.guideDr Unnikrishnan A ,Dr Poulose Jacob Ken_US
dc.publisher.placeCochinen_US
dc.publisher.universityCochin University of Science and Technologyen_US
dc.publisher.institutionDepartment of Computer Scienceen_US
dc.date.registered11/09/1998en_US
dc.date.completed07/06/2013en_US
dc.date.awarded14/12/2014en_US
dc.format.dimensionsen_US
dc.format.accompanyingmaterialDVDen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Department of Computer Science

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File226.4 kBAdobe PDFView/Open
02_certificate.pdf242.66 kBAdobe PDFView/Open
03_declaration.pdf248.98 kBAdobe PDFView/Open
04_acknowledgement.pdf234.79 kBAdobe PDFView/Open
05_table of contents.pdf438.71 kBAdobe PDFView/Open
06_list of figures.pdf345.86 kBAdobe PDFView/Open
07_list of tables.pdf299.4 kBAdobe PDFView/Open
08_abstract.pdf184.32 kBAdobe PDFView/Open
09_chapter 1.pdf358.35 kBAdobe PDFView/Open
10_chapter 2.pdf1.14 MBAdobe PDFView/Open
11_chapter 3.pdf792.73 kBAdobe PDFView/Open
12_chapter 4.pdf1.21 MBAdobe PDFView/Open
13_chapter 5.pdf1.15 MBAdobe PDFView/Open
14_chapter 6.pdf690.74 kBAdobe PDFView/Open
15_chapter 7.pdf255.03 kBAdobe PDFView/Open
16_papers published.pdf240.88 kBAdobe PDFView/Open
17_references.pdf343.7 kBAdobe PDFView/Open
bindiya.pdf3.32 MBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: