Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/23050
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialTrimodal biometrics personal authentication systems using improved score level fusion techniquesen_US
dc.date.accessioned2014-08-20T04:17:01Z-
dc.date.available2014-08-20T04:17:01Z-
dc.date.issued2014-08-20-
dc.identifier.urihttp://hdl.handle.net/10603/23050-
dc.description.abstractIn the recent years there is an increased emphasis on the privacy and security of information stored in various storage media such as personal devices databases corporate servers especially in fields like military security agencies corporate firms and automatic personal identification has become a very important topic Though there exist several high level security mechanisms using biometric verification most of these uses only a single trait of biometric The problem with a unimodal biometric verification system is that since it uses only a single biometric trait it suffers from the disadvantages such as lack of universality interclass variation and sensitivity to attacks which lead to spoofing of the authentication system In order to overcome these shortcomings ultimodal biometric systems are introduced In this thesis various combinations of multimodal authentication systems are implemented and analysed with several matching level fusion techniques A multimodal system using dynamic fingerprint verification system and improved iris segmentation is fused using adaptive rank level fusion echnique The results proved that the highest rank adaptive rank level fusion technique requires least authentication time of 0 54 minutes when compared with borda count and logistic regression fusion schemes newlineen_US
dc.format.extentxxii, 185p.en_US
dc.languageEnglishen_US
dc.relationp,169-183.en_US
dc.rightsuniversityen_US
dc.titleTrimodal biometrics personal authentication systems using improved score level fusion techniquesen_US
dc.title.alternativeen_US
dc.creator.researcherJameer basha Aen_US
dc.subject.keywordBiometricen_US
dc.subject.keywordMultimodal authentication systemen_US
dc.subject.keywordMultimodal biometric systemsen_US
dc.description.noteReferences p.169-183,en_US
dc.contributor.guidePalanisamy Ven_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Information and Communication Engineeringen_US
dc.date.registeredn.d.en_US
dc.date.completed01/12/2012en_US
dc.date.awarded30/12/2012en_US
dc.format.dimensions23cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Information and Communication Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File27.56 kBAdobe PDFView/Open
02_certificate.pdf825.02 kBAdobe PDFView/Open
03_abstract.pdf10.24 kBAdobe PDFView/Open
04_acknowledgement.pdf8.05 kBAdobe PDFView/Open
05_contents.pdf54.19 kBAdobe PDFView/Open
06_chapter1.pdf696.38 kBAdobe PDFView/Open
07_chapter2.pdf613.68 kBAdobe PDFView/Open
08_chapter3.pdf1.34 MBAdobe PDFView/Open
09_chapter4.pdf914.79 kBAdobe PDFView/Open
10_chapter5.pdf471.83 kBAdobe PDFView/Open
11_chapter6.pdf412.59 kBAdobe PDFView/Open
12_chapter7.pdf17.83 kBAdobe PDFView/Open
13_references.pdf686.68 kBAdobe PDFView/Open
14_publications.pdf15.73 kBAdobe PDFView/Open
15_vitae.pdf8.63 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: