Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/209167
Full metadata record
DC FieldValueLanguage
dc.coverage.spatial
dc.date.accessioned2018-07-23T09:00:44Z-
dc.date.available2018-07-23T09:00:44Z-
dc.identifier.urihttp://hdl.handle.net/10603/209167-
dc.description.abstractDocument clustering, one of the traditional data mining techniques, is an unsupervised learning paradigm where clustering methods try to identify inherent groupings of the text newlinedocuments. It produces a set of clusters that exhibit high intra-cluster similarity and low intercluster similarity. Document clustering provides efficient representation and visualization of newlinethe documents which helps in easy navigation. It has been studied intensively because of its wide applicability in various areas such as web mining, search engines, recommendation newlinesystem, business, biology, information retrieval, etc. The importance of document clustering emerges from the massive volume of textual documents created. Although numerous document clustering methods have been extensively studied in past years, there still exist several challenges (like high dimensionality,scalability,semantics, efficiency, etc.) for increasing the clustering quality. Particularly, most of the current documents clustering newlinealgorithms do not consider the semantic relationships which produce unsatisfactory clustering results. Recently, the efforts have been in applying semantics to document clustering. newline
dc.format.extentxi, 163
dc.languageEnglish
dc.relation
dc.rightsuniversity
dc.titleSemantics based Distributed Document Clustering
dc.title.alternative
dc.creator.researcherShah Ketan Neepa
dc.subject.keywordclustering methods
dc.subject.keyworddata mining techniques
dc.subject.keywordDocument clustering
dc.subject.keywordintra-cluster
dc.subject.keywordsemantics
dc.subject.keywordvisualization
dc.description.note
dc.contributor.guideMahajan Sunita
dc.publisher.placeMumbai
dc.publisher.universityNarsee Monjee Institute of Management Studies
dc.publisher.institutionDepartment of Computer Engineering
dc.date.registered02/02/2013
dc.date.completed2017
dc.date.awarded
dc.format.dimensions
dc.format.accompanyingmaterialDVD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Department of Computer Engineering

Files in This Item:
File Description SizeFormat 
01_ title page.pdfAttached File35.49 kBAdobe PDFView/Open
02_ declaration by the candidate.pdf4.72 kBAdobe PDFView/Open
03_ certificate of the supervisor and guide.pdf4.98 kBAdobe PDFView/Open
04_ certificate of examining committee.pdf22.48 kBAdobe PDFView/Open
05_ contents.pdf67.4 kBAdobe PDFView/Open
06_ acknowledgement.pdf256.49 kBAdobe PDFView/Open
07_ list figures_tables.pdf187.12 kBAdobe PDFView/Open
08_ abstract.pdf46.71 kBAdobe PDFView/Open
09_ chapter 1.pdf454.6 kBAdobe PDFView/Open
10_ chapter 2.pdf1.87 MBAdobe PDFView/Open
11_ chapter 3.pdf376.15 kBAdobe PDFView/Open
12_ chapter 4.pdf595.23 kBAdobe PDFView/Open
13_ chapter 5.pdf886.98 kBAdobe PDFView/Open
14_ chapter 6.pdf585.15 kBAdobe PDFView/Open
15_chapter 7.pdf905.35 kBAdobe PDFView/Open
16_chapter 8.pdf252.07 kBAdobe PDFView/Open
17_ references.pdf263.11 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: