Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/202715
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialComputer Science
dc.date.accessioned2018-05-02T05:34:06Z-
dc.date.available2018-05-02T05:34:06Z-
dc.identifier.urihttp://hdl.handle.net/10603/202715-
dc.description.abstractnewline Today bone fractures are very common in our country because of road accidents, sports injuries and falls. Patients with bone fractures who go into shock state have a mortality of 30-50%. When combined with other injuries in the body, for example, an abdominal injury, the chance of mortality rises even higher, approaching 100% in some cases. newlineThe X-Ray images are the most common means of medical imaging accessibility for people during the injuries and accidents. The numerous incidences necessitate the health care professionals to analyze a huge number of x-ray images. The use of computer-assisted automatic detection of fractures in X-Ray images can be a significant contribution for assisting the physicians in making faster and more accurate diagnostic decisions and fasten treatment planning. Among fractures, automatic detection is considered more challenging because they are different and variable in presentation and their outcomes are unpredictable. The research proposes an automatic algorithm (ROIMI) for detecting bone fracture in the X-Ray image. The proposed algorithm processes image step by step to obtain the results. The first step is segmentation. Segmentation facilitates the process partitioning bone for faster and better identification of the region of interest (ROI) from the X-ray image. The next step is to identify the region of interest. The region of interest (bone fracture) is a diagnostically important part of the analysis and suggesting the type of fracture based on its size. newline
dc.format.extentxxii, 114p.
dc.languageEnglish
dc.relationNo. of references 59
dc.rightsuniversity
dc.titleDecision Support System for Automatic Identification ROI for Medical Images
dc.title.alternative
dc.creator.researcherRutvi Rushbah Shah
dc.subject.keywordFracture, X-Ray imaging, Region of Interest, Bone Segmentation, Decision Support System
dc.description.note
dc.contributor.guidePriyanka Sharma
dc.publisher.placeAhmedabad
dc.publisher.universityGujarat Technological University
dc.publisher.institutionComputer Science
dc.date.registeredNov-12
dc.date.completed13/04/2018
dc.date.awarded
dc.format.dimensions
dc.format.accompanyingmaterialDVD
dc.source.universityUniversity
dc.type.degreePh.D.
Appears in Departments:Computer Science

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File109.02 kBAdobe PDFView/Open
02_declaration.pdf24.88 kBAdobe PDFView/Open
03_certificate.pdf24.4 kBAdobe PDFView/Open
04_originality_report.pdf33.46 kBAdobe PDFView/Open
05_phd_license.pdf29.87 kBAdobe PDFView/Open
06_thesis_approval_form.pdf42.55 kBAdobe PDFView/Open
07_acknowledgment.pdf24.5 kBAdobe PDFView/Open
08_abstract.pdf55.28 kBAdobe PDFView/Open
09_content.pdf49.15 kBAdobe PDFView/Open
10_list_of_figures.pdf59.63 kBAdobe PDFView/Open
11_list_of_table.pdf40.77 kBAdobe PDFView/Open
12_abbreviations.pdf69.22 kBAdobe PDFView/Open
13_chapter_1.pdf624.29 kBAdobe PDFView/Open
14_chapter_2.pdf882.54 kBAdobe PDFView/Open
15_chapter_3.pdf621.82 kBAdobe PDFView/Open
16_chapter_4.pdf1.29 MBAdobe PDFView/Open
17_chapter_5.pdf2.98 MBAdobe PDFView/Open
17_references.pdf65.29 kBAdobe PDFView/Open
18_conclusion.pdf33.68 kBAdobe PDFView/Open
19_scope_of_future_work.pdf22.85 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: