Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/16451
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialGaussian and cauchy inspired pso algorithms for power system optimizationen_US
dc.date.accessioned2014-02-27T08:41:21Z-
dc.date.available2014-02-27T08:41:21Z-
dc.date.issued2014-02-27-
dc.identifier.urihttp://hdl.handle.net/10603/16451-
dc.description.abstractThe main objective of this research work is to develop an enhanced newlineParticle Swarm Optimization (PSO) algorithm for solving various power newlinesystem generation scheduling problems. The enhanced PSO algorithm is newlinedeveloped from the conventional PSO algorithm by the combined application newlineof Gaussian and Cauchy distribution and hence it is appropriately termed as newlineGaussian Cauchy inspired Particle Swarm Optimization (GCPSO). The newlinemodifications made into the conventional PSO algorithm ensure more reliable newlineand faster convergence in obtaining a global optimal solution. The integrity of newlinethe proposed algorithm lies in the significance of dealing the optimization newlineproblems without placing any restrictions on the structure or type of the newlinefunction to be optimized. The various power system problems that are solved newlineusing GCPSO algorithm include: Economic Dispatch (ED), Economic newlineEmission Load Dispatch (EELD), Multi Constrained Economic Dispatch newline(MCED) with non-smooth fuel cost function, DC Optimal Power Flow newline(DCOPF), AC Optimal Power Flow (ACOPF), Security Constrained Optimal newlinePower Flow (SCOPF), Transient Stability Constrained OPF (TSCOPF), newlineOptimal Power Flow with Flexible AC Transmission System (FACTS) newlinecontrollers and wind farm integrated ED and OPF problems. Initially the ED problem is solved with the PSO algorithm and the newlinemajor shortcomings of the PSO algorithm are analyzed. The analysis reveals newlinecertain major limitations such as relatively large computational time, tendency newlinetowards premature convergence and search inconsistency. Hence there is a newlinenecessity to enhance the PSO algorithm. The feasible modifications using newlinevarious probability distributions that can be introduced into the PSO newlinealgorithm are investigated. From this investigation it is found that the newlineapplication of Gaussian and Cauchy distributions into the velocity update newlineequation are appropriate for enhancing the PSO algorithm.en_US
dc.format.extentxxv, 172p.en_US
dc.languageEnglishen_US
dc.relationp.162-169.en_US
dc.rightsuniversityen_US
dc.titleApplication of gaussian and cauchy inspired pso algorithms for power system optimization problemsen_US
dc.title.alternativeen_US
dc.creator.researcherMuthu selvan N Ben_US
dc.subject.keywordCauchyen_US
dc.subject.keywordElectrical engineeringen_US
dc.subject.keywordGaussianen_US
dc.subject.keywordPower system optimizationen_US
dc.description.noteAppendix p.147-161, References p.162-169.en_US
dc.contributor.guideSomasundaram Pen_US
dc.publisher.placeChennaien_US
dc.publisher.universityAnna Universityen_US
dc.publisher.institutionFaculty of Electrical and Electronics Engineeringen_US
dc.date.registeredn.d.en_US
dc.date.completed01/06/2012en_US
dc.date.awarded30/06/2012en_US
dc.format.dimensions21 cm.en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Faculty of Electrical and Electronics Engineering

Files in This Item:
File Description SizeFormat 
01_title.pdfAttached File69.8 kBAdobe PDFView/Open
02_certificates.pdf279.38 kBAdobe PDFView/Open
03_abstract.pdf378.11 kBAdobe PDFView/Open
04_acknowledgement.pdf92.04 kBAdobe PDFView/Open
05_contents.pdf1.18 MBAdobe PDFView/Open
06_chapter 1.pdf2.02 MBAdobe PDFView/Open
07_chapter 2.pdf3.5 MBAdobe PDFView/Open
08_chapter 3.pdf2.74 MBAdobe PDFView/Open
09_chapter 4.pdf1.91 MBAdobe PDFView/Open
10_chapter 5.pdf2.84 MBAdobe PDFView/Open
11_chapter 6.pdf236.93 kBAdobe PDFView/Open
12_appendix.pdf1.39 MBAdobe PDFView/Open
13_references.pdf942.63 kBAdobe PDFView/Open
14_publications.pdf182.19 kBAdobe PDFView/Open
15_vitae.pdf47.2 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).

Altmetric Badge: