Please use this identifier to cite or link to this item: http://hdl.handle.net/10603/12220
Full metadata record
DC FieldValueLanguage
dc.coverage.spatialMathematicsen_US
dc.date.accessioned2013-10-24T09:29:24Z-
dc.date.available2013-10-24T09:29:24Z-
dc.date.issued2013-10-24-
dc.identifier.urihttp://hdl.handle.net/10603/12220-
dc.description.abstractRecently, the study of non-Newtonian fluids has attracted much attention because of their newlinepractical applications. With the growing importance of non-Newtonian fluids in modern technology newlineand industries, investigations of such fluids are desirable. A number of industrially important fluids newlineincluding molten plastics, polymers, pulps, foods and fossil fuels, which may saturate in underground newlinebeds are exhibits non-Newtonian behavior. Due to complexity of fluids, several non-Newtonian fluid newlinemodels have been proposed. In the category of such fluids, second grade fluid is the simplest subclass newlinefor which one can hope to gain an analytic solution. Various studies on the flows of non-Newtonian newlinefluids have been made under different physical aspects. Moreover the problem of convective flow in newlinefluid saturated porous medium has been the subject of several recent papers. Interest in understanding newlinethe convective transport processes in porous material is increasing owing to the development of newlinegeothermal energy technology, high performance insulation for building and cold storage, renewed newlineinterest in the energy efficient drying processes and many other areas. It is also interest in the nuclear newlineindustry, particularly in the evaluation of heat removal from a hypothetical accident in a nuclear newlinereactor and to provide effective insulation. newlineIn this thesis, an attempt is made to model mathematically the flow of some non-Newtonian newlinefluids through porous medium under the effect of heat transfer with different geometries, under varied newlineboundary conditions. The thesis consists of six chapters. The first chapter presents the general newlineintroduction. The remaining five chapters deal with non-Newtonian fluids. newlineA brief general introduction to the non-Newtonian fluids and their applications in various newlinefields is presented in the first chapter. newlineIn second chapter we studied the non-classical heat conduction effects in Stokes second newlineproblem of a micropolar fluid through a porous medium. The expressions for the velocity field, newlineangular velocity and temperaen_US
dc.format.extent118en_US
dc.languageEnglishen_US
dc.relationNo.of references- 86en_US
dc.rightsuniversityen_US
dc.titleNon newtonian fluid flows through porous media with heat transferen_US
dc.title.alternativeen_US
dc.creator.researcherK. Ramakrishna Reddyen_US
dc.subject.keywordmedia with heat transferen_US
dc.subject.keywordNon newtonian fluid flows through porousen_US
dc.description.notereferences- 113-118en_US
dc.contributor.guideDr.G.S.S. RAJUen_US
dc.publisher.placeAnantapuramen_US
dc.publisher.universityJawaharlal Nehru Technological University, Anantapuramen_US
dc.publisher.institutionDepartment of Mathematicsen_US
dc.date.registered04.08.2008en_US
dc.date.completed05.02.2011en_US
dc.date.awarded05.09.2011en_US
dc.format.dimensions---en_US
dc.format.accompanyingmaterialNoneen_US
dc.source.universityUniversityen_US
dc.type.degreePh.D.en_US
Appears in Departments:Department of Mathematics

Files in This Item:
File Description SizeFormat 
abstract.pdfAttached File89.29 kBAdobe PDFView/Open
acknowledgement.pdf157.43 kBAdobe PDFView/Open
certificate.pdf135.41 kBAdobe PDFView/Open
chapter 1.pdf125.63 kBAdobe PDFView/Open
chapter2.pdf407.74 kBAdobe PDFView/Open
chapter3.pdf291.33 kBAdobe PDFView/Open
chapter4.pdf281.5 kBAdobe PDFView/Open
chapter5.pdf279.23 kBAdobe PDFView/Open
chapter6.pdf199.56 kBAdobe PDFView/Open
contents.pdf59.21 kBAdobe PDFView/Open
list of figures.pdf210.18 kBAdobe PDFView/Open
references.pdf92.63 kBAdobe PDFView/Open
title page.pdf205.75 kBAdobe PDFView/Open


Items in Shodhganga are licensed under Creative Commons Licence Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

Altmetric Badge: