Contents

I. INTRODUCTION 001 - 015

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1.</td>
<td>M phase inhibitor</td>
</tr>
<tr>
<td>I.1.1.</td>
<td>Vinblastine</td>
</tr>
<tr>
<td>I.2.</td>
<td>S phase inhibitor</td>
</tr>
<tr>
<td>I.2.1.</td>
<td>DNA precursor analogue/antimetabolite</td>
</tr>
<tr>
<td>I.2.1.1.</td>
<td>Methotrexate (MTX)</td>
</tr>
<tr>
<td>I.3.</td>
<td>Topoisomerase inhibitors</td>
</tr>
<tr>
<td>I.3.1.</td>
<td>Etoposide</td>
</tr>
<tr>
<td>I.4.</td>
<td>Cell cycle nonspecific antineoplastic agents</td>
</tr>
<tr>
<td>I.4.1.</td>
<td>Cisplatin</td>
</tr>
<tr>
<td>I.5.</td>
<td>Some potential plant derived anticancerous agents whose mode of action yet to be confirmed.</td>
</tr>
<tr>
<td>I.5.1.</td>
<td>Piper betle leaf extract (PbLE) as a potential anticancerous agent</td>
</tr>
<tr>
<td>I.6.</td>
<td>In vitro and in vivo assessments of anticancerous drugs</td>
</tr>
</tbody>
</table>

II. MATERIALS AND METHODS 016 - 032

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.1.</td>
<td>Germplasm</td>
</tr>
<tr>
<td>II.2.</td>
<td>Study of genetic fidelity of the selected germ plasm (Lathyrus sativus L.)</td>
</tr>
<tr>
<td>II.2.1.</td>
<td>Isolation of PCR compatible genomic DNA</td>
</tr>
<tr>
<td>II.2.2.</td>
<td>Testing the homozygosity of Lathyrus sativus L. using RAPD primers</td>
</tr>
<tr>
<td>II.2.3.</td>
<td>Agarose gel electrophoresis</td>
</tr>
<tr>
<td>II.3.</td>
<td>In silico study</td>
</tr>
<tr>
<td>II.3.1.</td>
<td>Data retrieval</td>
</tr>
<tr>
<td>II.3.1.1.</td>
<td>Data retrieval for vinblastine</td>
</tr>
<tr>
<td>II.3.1.2.</td>
<td>Data retrieval for MTX</td>
</tr>
<tr>
<td>II.3.1.3.</td>
<td>Data retrieval for etoposide</td>
</tr>
<tr>
<td>II.3.1.4.</td>
<td>Data retrieval for cisplatin</td>
</tr>
<tr>
<td>II.3.2.</td>
<td>BLAST searches and phylogenetic tree development for binding domain for anticancerous drugs</td>
</tr>
<tr>
<td>II.3.2.1.</td>
<td>BLAST search and construction of phylogenetic tree for β tubulin and α-β interface domain.</td>
</tr>
</tbody>
</table>
II.3.2.2. BLAST searches and construction of phylogenetic tree for DHFR and folate binding domain.

II.3.2.3. BLAST search for etoposide binding domain (top II domain)

II.3.2.4. BLAST search and construction of phylogenetic tree for cisplatin transporter (copper transporter 1)

II.4. In vivo study
II.4.1. Preparation of PbLE
II.4.2. Treatments
II.4.3. Assessment of radicle length and determination of mitotic index (MI)

II.5. In vitro study
II.5.1. Preparation of nutrient medium
II.5.2. Surface disinfectant of explants
II.5.3. Callus initiation and maintenance
II.5.4. Study of callus growth in response to different treatments

II.6. Biochemical and Molecular study
II.6.1. Determination of total RNA content from different concentration of anticancerous drugs (methotrexate, cisplatin) treated seedlings and control seedlings
II.6.2. Extraction of the dihydrofolate reductase enzyme from grass pea seedlings and assay of its activity in presence of different concentrations of methotrexate
II.6.3. Extraction of the DNA Topoisomerase II enzyme from Lathyrus seedlings and plasmid nicking assay in presence of different concentration of etoposide
II.6.3.1. Preparation of DNA topoisomerase II fractions
II.6.3.2. Isolation of Plasmid Blue Script DNA (pBS DNA)
II.6.3.3. Assay of DNA topoisomerase II activity

III. RESULTS

III.1. Genetic fidelity of the germplasm (Lathyrus sativus L.)
III.2. Vinblastine
 III.2.1. Phylogenetic analysis of predicted vinblastine binding α-β interface domains.
 III.2.2. Effect of vinblastine on radicle length and mitotic index.
 III.2.3. Effect of vinblastine callus growth inhibition.
 III.2.4. Effect of colchicine and its reversal in response to vinblastine
III.3. Methotrexate (MTX)
III.3.1. Phylogenetic analysis of predicted DHFR and folate binding domains
 III.3.1.1. Identification and characterization of predicted DHFR protein
 III.3.1.2. Phylogenetic analysis of predicted folate binding domains
III.3.2. Effect of MTX on radicle length and mitotic index
III.3.3. Effect of MTX on callus growth inhibition
III.3.4. Effect of colchicine and its reversal in response to MTX
III.3.5. Reversal of MTX activity by 5-formyl tetrahydrofolate (CF)
III.3.6. Effect of MTX on DHFR enzyme and total RNA content
III.4. Etoposide
 III.4.1. Phylogenetic analysis of predicted etoposide binding domain
 III.4.2. Effect of etoposide on radicle length and mitotic index
 III.4.3. Effect of etoposide on callus growth inhibition
 III.4.4. Effect of colchicine and its reversal in response to etoposide
 III.4.5. Effect of etoposide on topoisomerase II
III.5. Cisplatin
 III.5.1. Phylogenetic analysis of predicted cisplatin transporter domains
 III.5.2. Effect of cisplatin on radicle length and mitotic index
 III.5.3. Effect of cisplatin on callus growth inhibition
 III.5.4. Effect of colchicine and its reversal in response to cisplatin
 III.5.5. Effect of cisplatin on total RNA content
III.6. *Piper betle* leaf extract (PbLE)
 III.6.1. Effect of PbLE on radicle length and mitotic index
 III.6.2. Effect of PbLE on callus growth inhibition
 III.6.3. Effect of colchicine and its reversal in response to PbLE

IV. DISCUSSION

IV.1. *In silico* study
 IV.1.1. Human vinblastine binding α-β interface domains and its conserveness with plants
 IV.1.2. Study on folate binding domain of dihydrofolate reductase in different plant species and human beings
 IV.1.3. Etoposide binding domain in human and its conserveness with plants
 IV.1.4. Human cisplatin transporter domain and its conserveness with plants
IV.2. *In vivo* study
 IV.2.1. Effect of vinblastine on radicle length and mitotic index and polyploid cell formation
 IV.2.2. Effect of MTX on radicle length and mitotic index and on the frequency of polyploid cells
IV.2.3. Effect of etoposide on radical length and root tip mitosis
IV.2.4. Effect of cisplatin on radicle length and mitotic index and
 on polyploidy cell formation
IV.2.5. Effect of PbLE on mitotic attributes

IV.3. In vitro study

V. SUMMARY 077 - 080

VI. SIGNIFICANT OUTCOMES 081

VII. REFERENCES 082 - 099

VIII. PUBLISHED PAPERS 100