LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1:</td>
<td>Spotted Horses Panel of Pech Merle Cave; showing the use of color in ancient life</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2:</td>
<td>Structure of actinorhodin</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3:</td>
<td>Neighbor-joining phylogenetic tree based on 16S ribosomal RNA gene sequence, showing the position of isolate klmp 33. Bootstrap values were shown as percentages of 1000 replicates. Asterisks denote node that was recovered using the maximum-likelihood method</td>
<td>51</td>
</tr>
<tr>
<td>Figure 4:</td>
<td>Effect of initial pH on pigment production</td>
<td>55</td>
</tr>
<tr>
<td>Figure 5:</td>
<td>Effect of temperature on pigment production</td>
<td>55</td>
</tr>
<tr>
<td>Figure 6:</td>
<td>Effect of salt concentration on pigment production</td>
<td>56</td>
</tr>
<tr>
<td>Figure 7:</td>
<td>Optimization of carbon source</td>
<td>59</td>
</tr>
<tr>
<td>Figure 8:</td>
<td>Optimization of nitrogen source</td>
<td>60</td>
</tr>
<tr>
<td>Figure 9:</td>
<td>Optimization of metal ions</td>
<td>62</td>
</tr>
<tr>
<td>Figure 10:</td>
<td>Pigment production using potatoes extract</td>
<td>65</td>
</tr>
<tr>
<td>Figure 11:</td>
<td>UV–visible spectroscopy of the pigment produced by isolate klmp 33 showing maximum absorption at 638 nm</td>
<td>67</td>
</tr>
<tr>
<td>Figure 12:</td>
<td>FT-IR absorption spectra of the blue pigment produced by isolate</td>
<td>67</td>
</tr>
<tr>
<td>Figure 13:</td>
<td>LC/MS analysis of the pigment produced by isolate klmp 33</td>
<td>68</td>
</tr>
<tr>
<td>Figure 14:</td>
<td>Structure of γ actinorhodin</td>
<td>69</td>
</tr>
<tr>
<td>Figure 15:</td>
<td>Graphical representation of synthesis and characterization of Silver nanoparticles a): using photo-irradiation method and b): Microwave-irradiation method</td>
<td>74</td>
</tr>
<tr>
<td>Figure 16:</td>
<td>UV–visible spectrum of silver nanoparticles recorded as a function of Time a) synthesized using photo-irradiation and b) synthesized using microwave irradiated</td>
<td>76</td>
</tr>
<tr>
<td>Figure 17:</td>
<td>XRD pattern of synthesized silver nanoparticles</td>
<td>76</td>
</tr>
</tbody>
</table>
Figure 18: TEM images for silver nanoparticles 77

Figure 19: FTIR spectra of synthesized silver nanoparticles and pigment 77

Figure 20: UV-visible spectrum showing the microwave assisted synthesis of gold nanorods recorded as a function of time 85

Figure 21: TEM images of synthesized gold nanoparticles at 10 s (a), 30 s (b), 90 s (c) and 120 s (d) 85

Figure 22: XRD patterns of synthesized gold nanorods at 30 sec (a), 70 sec (b), 90 sec (c) and 120 sec (d) 86

Figure 23: FTIR spectra of synthesized gold nanorods and the pigment 86