CHAPTER 4

Inequalities on k-idempotent matrices

In this chapter, it is shown that all the standard partial orderings [2,7,24] such as Lowener, star and rank subtractivity are preserved under the fixed product of disjoint transpositions k. That is all the partial orderings are preserved under k-unitary similarity. Relation between k-hermitian matrix and k-idempotent matrix is derived here by means of Lowener partial order. It is proved that all the partial orderings are preserved for k-idempotent matrices when they are squared.
4.1 \(k \)-invariant partial orderings on matrices

In this section, it is to be proved that all the standard partial orderings are preserved under \(k \)-unitary similarity. The Lowener partial order, the star order and the minus order (rank subtractivity order) denoted by \(\succeq_{L} \), \(\succeq_{*} \) and \(\succeq_{rs} \) respectively are defined as follows:

Definition 4.1.1

For \(A, B \in \mathbb{C}^{n \times n} \),

\[A \succeq_{L} B \iff A - B \geq 0. \]

\[A \succeq_{*} B \iff B^*B = B^*A \text{ and } BB^* = AB^* \]

\[A \succeq_{rs} B \iff \text{rank}(A - B) = \text{rank}(A) - \text{rank}(B). \]

Remark 4.1.2

The following useful result (cf.[25]) explains the relation between Lowener partial order and the spectral radius of the transformation. For \(A, B \in \mathbb{C}^{n \times n} \),

\[A \succeq_{L} B \iff \rho(A^\dagger B) \leq 1 \text{ and } R(B) \subseteq R(A), \]

where \(\rho(A) = \max \{ |\lambda| : \lambda \text{-an eigen value of } A \} \) is the spectral radius of \(A \).

Lemma 4.1.3

If \(K \) is the associated permutation matrix of \(k \), then for \(A, B \in \mathbb{C}^{n \times n} \),

\[A \succeq_{L} B \iff KA \succeq_{L} KB \iff AK \succeq_{L} BK \]

Proof

\[A \succeq_{L} B \iff \rho(A^\dagger B) \leq 1 \text{ and } R(B) \subseteq R(A) \]

\[\iff \rho(A^\dagger KKB) \leq 1 \text{ and } B = AA^\dagger B \] \[\text{ [by remark 4.1.2] } \]

\[\iff \rho(A^\dagger KKB) \leq 1 \text{ and } KB = KAA^\dagger KKB \] \[\text{ [by theorem 1.2.9] } \]

\[\iff \rho((KA)^\dagger KB) \leq 1 \text{ and } R(KB) \subseteq R(KA) \] \[\text{ [by theorem 1.2.9] } \]
\[
\Leftrightarrow KA \succeq_l KB \quad \text{[by remark 4.1.2]}
\]

Similarly,
\[
A \succeq_l B \Leftrightarrow \rho(A^\dagger B) \leq 1 \text{ and } R(B) \subseteq R(A) \quad \text{[by remark 4.1.2]}
\]
\[
\Leftrightarrow \rho(KA^\dagger BK) \leq 1 \text{ and } B = AA^\dagger B \quad \text{[by theorem 1.2.9]}
\]
\[
\Leftrightarrow \rho[(AK)^\dagger BK] \leq 1 \text{ and } BK = AK(AK)^\dagger BK
\]
\[
\Leftrightarrow \rho[(AK)^\dagger BK] \leq 1 \text{ and } R(BK) \subseteq R(AK) \quad \text{[by theorem 1.2.9]}
\]
\[
\Leftrightarrow AK \succeq_l BK \quad \text{[by remark 4.1.2]}
\]

Hence the proof. ■

Result 4.1.4

It can be easily verified that Lowener ordering is preserved under unitary similarity. That is

\[
A \succeq_l B \Leftrightarrow P^*AP \succeq_l P^*BP
\]

Theorem 4.1.5

Lowener ordering is preserved for \(k\)-unitary similarity.

Proof
\[
A \succeq_l B \Leftrightarrow KA \succeq_l KB \quad \text{[by lemma 4.1.3]}
\]
\[
\Leftrightarrow P^*KAP \succeq_l P^*KBP \quad \text{[by result 4.1.4]}
\]
\[
\Leftrightarrow KP^*KAP \succeq_l KP^*KBP \quad \text{[by lemma 4.1.3]}
\]
\[
\Leftrightarrow KP^{-1}KAP \succeq_l KP^{-1}KBP
\]

If \(C = KP^{-1}KAP\) then \(C\) is unitarily \(k\)-similar to \(A\).

If \(D = KP^{-1}KBP\) then \(D\) is unitarily \(k\)-similar to \(B\).
Therefore $C \succeq_l D$ and hence Lowener ordering is preserved for k-unitary similarity.

Note 4.1.6

If $K = I$ in theorem 4.1.5, it reduces to result 4.1.4.

Remark 4.1.7

The following result (see[24]) establishes a relation between star ordering and rank subtractivity. For $A, B \in \mathbb{C}^{n \times n}$,

$$A \succeq \ast B \iff A \succeq \ast \frac{1}{r^2} \quad \text{and} \quad (A - B)^\dagger = A^\dagger - B^\dagger$$

Lemma 4.1.8

If K is the associated permutation matrix of k, then for $A, B \in \mathbb{C}^{n \times n}$,

$$A \succeq \ast B \iff KA \succeq \ast KB \iff AK \succeq \ast BK$$

Proof

$$A \succeq \ast B \iff B^*B = B^*A \text{ and } BB^* = AB^*$$

$$\iff B^*KKB = B^*KKKA \text{ and } KBB^*K = KAB^*K$$

$$\iff (KB)^*KB = (KB)^*KA \text{ and } KB(KB)^* = KA(KB)^*$$

$$\iff KA \succeq \ast KB$$

Similarly,

$$A \succeq \ast B \iff B^*B = B^*A \text{ and } BB^* = AB^*$$

$$\iff KB^*BK = KB^*AK \text{ and } BKKB^* = AKKB^*$$

$$\iff (BK)^*BK = (BK)^*AK \text{ and } BK(BK)^* = AK(BK)^*$$

$$\iff AK \succeq \ast BK$$
Result 4.1.9

It can be easily verified that star ordering is preserved under unitary similarity.

That is

\[A \succeq B \iff P^*AP \succeq P^*BP \]

Theorem 4.1.10

Star ordering is preserved for k-unitary similarity.

Proof

\[A \succeq B \iff KA \succeq KB \quad \text{[by lemma 4.1.8]} \]

\[\iff P^*KAP \succeq P^*KBP \quad \text{[by result 4.1.9]} \]

\[\iff KP^*KAP \succeq KP^*KBP \quad \text{[by lemma 4.1.8]} \]

\[\iff KP^{-1}KAP \succeq KP^{-1}KBP \]

If \(C = KP^{-1}KAP \) then \(C \) is unitarily k-similar to \(A \).

If \(D = KP^{-1}KBP \) then \(D \) is unitarily k-similar to \(B \).

Therefore \(C \succeq D \) and hence star ordering is preserved for k-unitary similarity. \[\square \]

Note 4.1.11

If \(K = I \) in theorem 4.1.10, it reduces to result 4.1.9.

Remark 4.1.12

The following result exhibits an equivalent condition for minus ordering of two matrices \(A \) and \(B \). For \(A, B \in \mathbb{C}^{n \times n} \),

\[A \succeq_{rs} B \iff B = BA^{(1)}B = BA^{(1)}A = AA^{(1)}B \]

Lemma 4.1.13

If \(K \) is the associated permutation matrix of \(k \), then for \(A, B \in \mathbb{C}^{n \times n} \),

\[A \succeq_{rs} B \iff KA \succeq_{rs} KB \iff AK \succeq_{rs} BK \]
Proof

\[A \succeq B \iff \text{rank}(A - B) = \text{rank}(A) - \text{rank}(B) \]

\[\iff \text{rank}(K(A - B)) = \text{rank}(KA) - \text{rank}(KB) \]

\[\iff \text{rank}(KA - KB) = \text{rank}(KA) - \text{rank}(KB) \]

\[\iff KA \succeq KB \]

Similarly,

\[A \succeq B \iff \text{rank}(A - B) = \text{rank}(A) - \text{rank}(B) \]

\[\iff \text{rank}((A - B)K) = \text{rank}(AK) - \text{rank}(BK) \]

\[\iff \text{rank}(AK - BK) = \text{rank}(AK) - \text{rank}(BK) \]

\[\iff AK \succeq BK \]

Result 4.1.14

It can be easily verified that rank subtractivity ordering is preserved under unitary similarity. That is

\[A \succeq B \iff P^*AP \succeq P^*BP \]

Theorem 4.1.15

Rank subtractivity ordering is preserved for \(k \)-unitary similarity.

Proof

\[A \succeq B \iff KA \succeq KB \]

\[\iff P^*KAP \succeq P^*KBP \]

\[\iff KP^*KAP \succeq KP^*KBP \]

\[\iff KP^{-1}KAP \succeq KP^{-1}KBP \]

If \(C = KP^{-1}KAP \) then \(C \) is unitarily \(k \)-similar to \(A \).

If \(D = KP^{-1}KBP \) then \(D \) is unitarily \(k \)-similar to \(B \).
Therefore $C \preceq_{rs} D$ and hence rank subactivity ordering is preserved for k-unitary similarity.

\textbf{Note 4.1.16}

If $K = I$ in \textit{theorem 4.1.15}, it reduces to \textit{result 4.1.14}.
4.2 Partial orderings on \(k \)-idempotent matrices

In this section, partial orderings on \(k \)-idempotent matrices is discussed and a relation between a square hermitian matrix and a \(k \)-idempotent matrix through Lowener partial order is discovered.

Lemma 4.2.1

If \(A \succeq_l B \) for matrices \(A \) and \(B \) then \(A - B \) is \(k \)-hermitian.

Proof

\[A \succeq_l B \implies KA \succeq_l KB \]
[by lemma 4.1.3]

\[KA - KB \geq 0 \]

\[K(A - B) \geq 0 \]

Hence \(A - B \) is \(k \)-hermitian positive semi definite.

That is \((A - B)^* = K(A - B)K \)

\(A - B \) is \(k \)-hermitian.

Theorem 4.2.2

Let \(A \succeq_l B \) and \(A \succeq_r B \). If \(B \) is a \(k \)-idempotent matrix then \(B^{(1)} = KAK \).

Proof

\(A \succeq_r B \) implies that

\[BB^* = AB^* \]

\[B^*B = B^*A \]

Therefore \(B^*(A - B) = 0 \)

\[[(A - B)^*B]^* = 0 \]

(4.1) \((A - B)^*B = 0 \)

Since \(A \succeq_l B \), we have \((A - B)^* = K(A - B)K \) by lemma 4.2.1.

Hence from (4.1), we have
\[K(A - B)KB = 0 \]
\[KAKB - KBKB = 0 \]
\[KAKB - B^3 = 0 \]
\[BKAKB - B = 0 \]

That is \(B(KAK)B = B \)

Therefore \(B^{(1)} = KAK \) \[\square \]

Theorem 4.2.3

Let \(A \geq B \). If \(A \) is \(k \)-hermitian \(k \)-idempotent then \(B \) is \(k \)-hermitian and vice versa.

Proof

Since \(A \geq B \), we have \(A - B \) is \(k \)-hermitian. \[\text{[by lemma 4.2.1]} \]

That is \((A - B)^* = K(A - B)K \)

(4.2) \[A^* - B^* = KAK - KBK \]

If \(A \) is \(k \)-hermitian \(k \)-idempotent then \(A \) is square hermitian by *theorem 2.3.1*.

(4.2) becomes

\[A^2 - B^* = A^2 - KBK \]

\[B^* = KBK \]

Hence \(B \) is \(k \)-hermitian.

On the other hand, if \(B \) is \(k \)-hermitian \(k \)-idempotent then \(B \) is square hermitian by *theorem 2.3.1*.

(4.2) becomes

\[A^* - B^2 = KAK - B^2 \]

\[A^* = KAK \]
Hence A is k-hermitian.

Theorem 4.2.4

Let A and B are k-idempotent matrices. Then

\[A \geq_l B \text{ if and only if } A^2 \geq_l B^2 \]

Proof

Assuming that $A \geq_l B$

\[KA \geq_l KB \]

\[KAK \geq_l KBK \]

Therefore \[A^2 \geq_l B^2 \]

Conversely, if we assume $A^2 \geq_l B^2$, then we have $A^4 \geq_l B^4$ by what we have proved above and theorem 2.1.7 (b).

That is $A \geq_l B$. \[\text{[by theorem 2.1.7 (c)]} \]

Hence the theorem is proved.

Theorem 4.2.5

Let A and B are k-idempotent matrices. Then

\[A \geq_v B \text{ if and only if } A^2 \geq_v B^2 \]

Proof

Assuming that $A \geq_v B$ then we have

(i) $B^*B = B^*A$

(ii) $BB^* = AB^*$

From (i), $KB^*BK = KB^*AK$

\[(B^*)^2KKB^2 = (B^*)^2KKA^2 \] \[\text{[by theorem 2.1.7 (a)]} \]

(4.3) \[(B^2)^*B^2 = (B^2)^*A^2 \]
From (ii), \(KBB^*K = KAB^*K \)

\[
B^2KK(B^*)^2 = A^2KK(B^*)^2
\]

(4.4) \(B^2(B^2)^* = A^2(B^2)^* \)

From (4.3) and (4.4), we have \(A^2 \geq_r B^2 \)

Conversely, if we assume that \(A^2 \geq_r B^2 \) then we have \(A^4 \geq_r B^4 \) by what we have proved above and theorem 2.1.7 (b).

That is \(A \geq_r B \) \hspace{1cm} [by theorem 2.1.7 (c)]

Hence the theorem is proved.

\[\]

Theorem 4.2.6

Let \(A \) and \(B \) are \(k \)-idempotent matrices. Then

\(A \geq_{rs} B \) if and only if \(A^2 \geq_{rs} B^2 \)

Proof

Assuming that \(A \geq_{rs} B \)

\[
B = BA^{(1)}A = AA^{(1)}B = BA^{(1)}B
\]

[by remark 4.1.12]

\[
KBB = KBA^{(1)}AK = KAA^{(1)}BK = KBA^{(1)}BK
\]

\[
B^2 = B^2KA^{(1)}KA^2 = A^2KA^{(1)}KB^2 = B^2KA^{(1)}KB^2
\]

\[
\]

Therefore \(A^2 \geq_{rs} B^2 \) \hspace{1cm} [by remark 4.1.12]

Conversely, if we assume that \(A^2 \geq_{rs} B^2 \) then we have \(A^4 \geq_{rs} B^4 \) by what we have proved above and theorem 2.1.7 (b).

That is \(A \geq_{rs} B \) \hspace{1cm} [by theorem 2.1.7 (c)]

Hence the theorem is proved.
Theorem 4.2.7

If A and B are two disjoint square hermitian and skew square hermitian matrices such that $A \gtrless_{l} B$ then $A - B$ is k-idempotent.

Proof

\[
(A - B)^2 = A^2 + B^2 \quad \text{[by } AB = BA = 0 \text{]}
\]

\[
= A^* - B^*
\]

(4.5) \quad (A - B)^2 = (A - B)^*

Since $A \gtrless_{l} B$, we have $A - B$ is k-hermitian. \text{[by lemma 4.2.1]}

That is $(A - B)^* = K(A - B)K$

(4.5) becomes,

\[
(A - B)^2 = K(A - B)K
\]

\[
K(A - B)^2K = (A - B)
\]

Hence $A - B$ is k-idempotent. □

Note 4.2.8

The following theorem can be considered to be somehow a reverse of the above theorem 4.2.7

Theorem 4.2.9

If A and B are two disjoint k-idempotent matrices such that $A \gtrless_{l} B$ then A and B are square hermitian matrices.

Proof

$A \gtrless_{l} B$ implies that $A - B$ is k-hermitian \text{[by lemma 4.2.1]}

(4.6) \quad (A - B)^* = K(A - B)K

\[
A^* - B^* = KAK - KBK
\]

(4.7) \quad A^* - B^* = A^2 - B^2
Squaring (4.6), we have

\[
\begin{align*}
[(A - B)^\ast]^2 &= K(A - B)^2K \\
[(A - B)^2]^\ast &= K(A^2 + B^2)K & \text{[by } AB = BA = 0 \text{]}
\end{align*}
\]

\[
[(A^2 + B^2)]^\ast = KA^2K + KB^2K
\]

\[
[(A^2 + B^2)]^\ast = A + B
\]

\[
A^2 + B^2 = (A + B)^\ast
\]

(4.8) \quad A^2 + B^2 = A^\ast + B^\ast

From (4.7) and (4.8), solving for \(A^\ast \) and \(B^\ast \) we have \(A^\ast = A^2 \) and \(B^\ast = B^2 \).

That is \(A \) and \(B \) are square Hermitian matrices. \(\blacksquare \)