CHAPTER III
g^*-CLOSED FUZZY SETS, MAPS AND OTHER RELATED CONCEPTS IN FTS

3.1 INTRODUCTION

The concepts of g^*-closed sets and $T^{*}_{1/2}$, $T^{*}_{1/2}$ - spaces were introduced and studied by Veerakumar [54] in the year 2000 for general topological spaces. Also g-continuous maps were introduced and studied in [54].

In section 2 of this chapter, g^*-closed fuzzy sets have been introduced and studied and as an application of these fuzzy sets, two new spaces namely fuzzy-$T^{*}_{1/2}$ and fuzzy-$T_{1/2}$ have been introduced and studied for fuzzy topological spaces. It is observed that every g^*-closed fuzzy set is g-closed fuzzy set and a b-closed fuzzy set but not conversely. Characterisation of g^*-closed fuzzy sets is obtained. Further fuzzy g^*-closure and fuzzy g^*-interior concepts have been investigated. It is observed that every fuzzy-$T_{1/2}$ space is fuzzy-$T^{*}_{1/2}$ and also fuzzy-$T_{1/2}$.

In section 3, fuzzy g^*-continuous, g^*-closed and related concepts in fts have been introduced and studied. It is observed that every fg^*-continuous function is fg-continuous and also fb-continuous but not conversely. A characterisation of g^*-continuous maps is obtained. Results on composition of g^*-continuous, g^*-closed and g^*-homeomorphism maps are obtained. It is observed that every closed map is g^*-closed but not conversely. It is also observed that the image of g^*-closed fuzzy set is g^*-closed under fuzzy gc-irresolute, closed map. Also the image of normal fts is normal under an f-continuous, fg^*-closed map. It is proved that every strongly gf-continuous and also strongly fb-continuous map is
strongly \(f_{g^*} \)-continuous and the image of regular fts is regular under \(f \)-continuous \(f \)-open, \(f_{g^*} \)-closed map.

In the fourth and final section, \(g^* \)-compactness, countable \(g^* \)-compactness and \(g^* \)-Lindelof property have been introduced and studied. It is proved that every \(f_g \)-compact fts is \(f_{g^*} \)-compact but not conversely. A characterisation of \(g^* \)-compact and its related concepts in fts have been obtained. Further it is observed that the image of \(g^* \)-compact fts under \(f_{g^*} \)-continuous function is fuzzy compact. In the last part of this section, \(g^* \)-regular and \(g^* \)-normal fts have been introduced and studied. Characterisations of \(g^* \)-normal and \(g^* \)-regular fts are obtained. It is observed that every \(g^* \)-regular fts is regular. The image of \(g^* \)-regular fts is \(g^* \)-regular under open, \(f_{g^*} \)-irresolute bijective map. It is observed that every \(b \)-regular (resp. \(b \)-normal) fts is \(g^* \)-regular (resp. \(g^* \)-normal) but not conversely.

This chapter contains several counterexamples.

3.2 \(g^* \) - CLOSED FUZZY SETS IN FTS

3.2.1 Definition: A fuzzy set \(A \) of a fts \(X \) is called \(g^* \)-closed fuzzy set if \(\text{cl} (A) \leq U \) whenever \(A \leq U \) and \(U \) is \(g \)-open fuzzy set in \(X \).

3.2.2 Theorem: Every closed fuzzy set is \(g^* \)-closed fuzzy set in fts \(X \).

Proof: Let \(A \) be a closed fuzzy set in a fts \(X \). Let \(A \leq U \) where \(U \) is \(g \)-open fuzzy set in \(X \). Since \(A \) is closed, we have \(\text{cl} (A) = A \leq U \). That is \(\text{cl} (A) \leq U \). Hence \(A \) is \(g^* \)-closed fuzzy set.

The converse of the above theorem need not be true as seen from the following example.

3.2.3 Example: Let \(X = \{a,b,c\} \). The fuzzy sets \(A \) and \(B \) be defined as follows: \(A = \{(a, .4), (b, .5), (c, .7)\} \), \(B = \{(a, 1), (b, .9), (c, .8)\} \). Let
T = \{0, 1, A\}. Then (X, T) is fts. Note that fuzzy subset B is g*-closed but not closed in (X, T).

3.2.4. Theorem: In any fts X, every g*-closed fuzzy set is g-affilled.

Proof: Let A be a g*-closed fuzzy set in X. Let A \leq U where U is open and so g-open fuzzy set. Since A is g*-closed, we have cl(A) \leq U. And hence A is g-affilled fuzzy set.

The converse of the above theorem need not be true as seen from the following example.

3.2.5 Example: Let X = \{a, b, c\}. The fuzzy sets A and B be defined as follows: A = \{(a, .2), (b, .5), (c, .3)\}, B = \{(a, .5), (b, .2), (c, .3)\}. Let T = \{0, 1, A\}. Then (X, T) is fts. Here the fuzzy set B is g-affilled but not g*-affilled in (X, T).

3.2.6 Theorem: Every g* - closed fuzzy set is a b - closed fuzzy set in any fts X.

Proof: Let A be a g* - closed fuzzy set in a fts X.

Let A \leq U where U be open fuzzy set and so is g - open fuzzy set. Since A is g* - closed, we have cl(A) \leq U. Since bd(A) \leq clA \leq U, it follows that bd(A) \leq U. Hence A is b - closed in X.

The converse of the above theorem need not be true as seen from the following example.

3.2.7 Example: Let X = \{a, b, c\}. Fuzzy sets A and B be defined as follows: A = \{(a, .2), (b, .5), (c, .3)\}, B = \{(a, .5), (b, .2), (c, .3)\}. Then (X, T) is fts with fuzzy topology T = \{0, 1, A\}. Here the fuzzy set B is b - closed but not g* - closed.

3.2.8 Theorem: If a fuzzy set A of a fts X is both open and g* - closed fuzzy set then it is closed.

Proof: Suppose a fuzzy set A of a fts X is both open and g*-closed.
Now $A \leq A$, A is open and so is g-open. This implies that $\text{cl}(A) \leq A$ since A is g^*-closed. Also, we have $A \leq \text{cl}(A)$, which implies $\text{cl}(A) = A$. Hence A is closed fuzzy set.

3.2.9 Theorem: If a fuzzy set A is both open and g^*-closed then it is both regular open and regular closed in fts X.

Proof: Since A is open fuzzy set, we have $A = \text{int}A = \text{int}(\text{cl} A)$, since A is closed by theorem 3.2.8. So, $A = \text{int}(\text{cl} A)$. Hence A is regular open.

Again $\text{int}A = A$ then $\text{cl}(\text{int} A) = \text{cl}(A) = A$, since A is closed. That is $\text{cl}(\text{int} A) = A$. Hence A is regular - closed fuzzy set.

3.2.10 Theorem: In a fts X, if a fuzzy set A is both open and g-closed then A is g^*-closed fuzzy set.

Proof: Let A be open and g-closed fuzzy set in X. Now $A \leq A$ where A is open and so is g-open. Since A is g-closed, $\text{cl}(A) \leq A$. Also $A \leq \text{cl}(A)$. Therefore $\text{cl}(A) = A$. So A is closed fuzzy set and hence A is g^*-closed.

3.2.11 Theorem: In a fts X, if a fuzzy set A is both open and b-closed then A is g^*-closed.

Proof: We have $A \leq A$ where A is open. Since A is b-closed, we have $\text{bd} (A) \leq A$. We know that a fuzzy set A is closed iff $\text{bd}(A) \leq A$, from [57]. Hence A is closed fuzzy set and therefore A is g^*-closed in X.

3.2.12 Theorem: If A is a g^*-closed fuzzy set and $\text{cl}(A) \wedge (1 - \text{cl}A) = 0$ then there is no non-zero g-closed fuzzy set F such that $F \leq \text{cl} (A) \wedge (1 - A)$.

Proof: Suppose F is any g-closed fuzzy set of X such that $F \leq \text{cl} (A) \wedge (1 - A)$. Now $F \leq 1 - A$ implies that $A \leq 1 - F$, $1 - F$ is g-open. Since A is g^*-closed, $\text{cl}(A) \leq 1 - F$ which implies $F \leq 1 - \text{cl} (A)$. Thus $F \leq \text{cl}(A)$ and $F \leq 1 - \text{cl}(A)$. Therefore $F \leq \text{cl} (A) \wedge (1 - \text{cl} (A)) = 0$ which implies $F = 0$. Hence the result.
3.2.13 **Theorem:** If a fuzzy set A is g^*-closed in X such that $A \leq B \leq \text{cl}(A)$, then B is also a g^*-closed fuzzy set of X.

Proof: Let U be g-open fuzzy set such that $B \leq U$, then $A \leq U$. Since A is g^*-closed, $\text{cl}(A) \leq U$. Now $\text{cl}(B) \leq \text{cl}(\text{cl}(A)) = \text{cl}(A) \leq U$. That is $\text{cl}(B) \leq U$. Hence B is a g^*-closed fuzzy set.

3.2.14 **Theorem:** A finite union of g^*-closed fuzzy sets is a g^*-closed fuzzy set.

Proof: Let A and B be g^*-closed fuzzy sets in a fts X. To prove that $A \vee B$ is g^*-closed. Let $A \vee B \leq U$ where U is g-open fuzzy set. Then $A \leq U$ and $B \leq U$ and so $\text{cl}(A) \leq U$ and $\text{cl}(B) \leq U$ since A and B are g^*-closed fuzzy sets. This implies that $\text{cl}(A) \vee \text{cl}(B) \leq U$, and so $\text{cl}(A \vee B) \leq U$. Hence $A \vee B$ is g^*-closed.

Thus a finite union of g^*-closed fuzzy sets is g^*-closed.

The following is due to S.R. Malghan and S.S. Benchalli [31].

3.2.15 **Theorem** [31]: X is a normal fts iff for any two closed fuzzy sets a and b in X such that $a \leq 1 - b$ there exist open fuzzy sets c, d such that $a \leq c$, $b \leq d$ and $c \leq 1 - d$.

3.2.16 **Theorem:** If (X,T) is normal fts and F is closed and A is g^*-closed such that $A \leq 1 - F$ then there exists open fuzzy sets U and V such that $F \leq U$, $A \leq V$ and $U \leq 1 - V$.

Proof: Given $A \leq 1 - F$, $1 - F$ is open and so g-open fuzzy set. Since A is g^*-closed, $\text{cl}(A) \leq 1 - F$. Since (X, T) is normal from 3.2.15, there exists two open fuzzy sets U and V such that $F \leq U$, $\text{cl}(A) \leq V$ and $U \leq 1 - V$ we have $F \leq U$, $A \leq V$ [$A \leq \text{cl}(A)$].

3.2.17 **Theorem:** In a fts (X, T), $T = \text{the family of all closed fuzzy sets and } X$ is fuzzy-$T_{1/2}$ iff every fuzzy subset of X is a g^*-closed fuzzy set.

Proof: Suppose that every fuzzy set of X is g^*-closed fuzzy set. Let $A \in T$. Then, since $A \leq A$, A is open and so is g-open and A is
g*-closed, we have cl(A) ≤ A. But A ≤ cl(A). Therefore cl(A) = A. That is A is a closed fuzzy set.

Also if B is closed, then 1 − B ∈ T and therefore closed by hypothesis, and hence B is an open fuzzy set.

Conversely, let T = family of all closed fuzzy sets and X be fuzzy-$T_{1/2}$ space. Let A be any fuzzy subset of X. Let A ≤ O where O is g - open. Then O is open in X since X is fuzzy - $T_{1/2}$. And so O ∈ T and therefore is closed. That is A is closed. Therefore cl(A) ≤ cl(O) = O. Hence A is g* - closed in X.

We introduce g*-open fuzzy sets.

3.2.18 Definition: A fuzzy set A of a fts X is called g* - open if its complement 1 − A is g* - closed.

We have the following characterization.

3.2.19 Theorem: A fuzzy set A of a fts X is g* - open iff F < int(A) whenever F is g - closed and F ≤ A.

Proof: Suppose A is g*- open fuzzy set. Then 1 − A is g* - closed. Let F be g - closed fuzzy set in X and F ≤ A. Then 1 − A ≤ 1 − F, 1 − F is g - open. Since 1 − A is g* - closed, we have cl(1 − A) ≤ 1 − F. Which implies F ≤ int A as cl(1 − A) = 1 − intA.

Conversely, assume that F ≤ int (A), whenever F ≤ A and F is g - closed fuzzy set in a fts X. Let 1 − A ≤ G where G is g-open fuzzy set in X. Then 1 − G ≤ A, where 1 − G is g-closed which implies that 1 − G ≤ int(A) implies that 1 − int(A) ≤ 1 − (1 − G). That is cl(1 − A) ≤ G. Hence 1 − A is g*- closed and so A is g*- open fuzzy set.

3.2.20 Theorem: Every open fuzzy set is g*- open.

Proof: Let A be a open fuzzy set in a fts X. Then 1 − A is closed. And so 1 − A is g* - closed. Hence A is g* - open in X.
The converse of the above theorem need not be true as seen from the following example.

3.2.21 Example: Let \(X = \{ a, b, c \} \). Define the fuzzy sets \(A \) and \(B \) as follows: \(A = \{(a, .4), (b, .5), (c, .7)\} \), \(B = \{(a, 0), (b, .1), (c, .2)\} \). Then \((X, T)\) is a fts with the fuzzy topology \(T = \{ 0, 1, A \} \). Here the fuzzy set \(B \) is \(g^* \) - open but not open fuzzy set in \(X \).

3.2.22 Theorem: In a fts \(X \), every \(g^* \) - open fuzzy set is \(g \) - open.

Proof: Let \(A \) be \(g^* \) - open in a fts \(X \). Then \(1 - A \) is \(g^* \) - closed in \(X \). And so \(1 - A \) is \(g \)-closed. That is \(A \) is \(g \)-open in \(X \).

The converse of the above theorem need not be true as seen from the following example.

3.2.23 Example: In the example 3.2.5, the fuzzy subset \(1 - B = \{(a, .5), (b, .8), (c, .7)\} \) is \(g \)-open but not \(g^* \)-open in \(X \).

3.2.24 Theorem: Every \(g^* \) - open fuzzy set is \(b \)-open fuzzy set.

Proof: Let \(A \) be \(g^* \)-open fuzzy set in a fts \(X \). Then \(1 - A \) is \(g^* \)-closed. And therefore \(1 - A \) is \(b \)-closed. Hence \(A \) is \(b \)-open fuzzy set.

The converse of the above theorem need not be true as seen from the following example.

3.2.25 Example: In the example 3.2.5 the fuzzy set \(1 - B \) is \(b \)-open but not \(g^* \)-open in \(X \).

3.2.26 Theorem: If \(\text{int}A \leq B \leq A \) and if \(A \) is \(g^* \) - open then \(B \) is \(g^* \) - open in a fts \(X \).

Proof: We have \(\text{int}(A) \leq B \leq A \). Then \((1 - A) \leq (1 - B) \leq \text{cl} (1 - A) \) and since \(1 - A \) is \(g^* \) - closed, by the theorem 3.2.13, \(1 - B \) is \(g^* \) - closed in \(X \). And hence \(B \) is \(g^* \) - open.

3.2.27 Theorem: If \(A \leq B \leq X \) where \(A \) is \(g^* \) - open relative to \(B \) and \(B \) is \(g^* \) - open relative to \(X \), then \(A \) is \(g^* \) - open relative to fts \(X \).
Proof: Let F be g-closed fuzzy set and $F \leq A$. Then F is g-closed relative to B and hence $F \leq \text{int}_{I_p}(A)$ by the theorem 3.2.19. Hence $F \leq \text{int}(A) \land B$, which implies that $F \leq \text{int}A$. Again by theorem 3.2.19. A is g^*-open in X.

3.2.28 Theorem: Finite intersection of g^*-open fuzzy sets is a g^*-open fuzzy set.

Proof: Let A and B be g^*-open fuzzy sets in a fts X. To prove that $A \land B$ is g^*-open. Let $F \leq A \land B$ where F be g-closed. Then $F \leq A$, $F \leq B$. Then $F \leq \text{int}(A)$, $F \leq \text{int}B$ as A and B are g^*-open. Then $F \leq \text{int}(A) \land \text{int}(B) = \text{int}(A \land B)$. That is $F \leq \text{int}(A \land B)$. Hence $A \land B$ is g^*-open.

Thus finite intersection of g^*-open fuzzy sets is g^*-open.

3.2.29 Theorem: A fuzzy set A is g^*-closed and $\text{cl}(A) \land (1 - \text{cl} A) = 0$ then $\text{cl}(A) \land (1 - A)$ is g^*-open in X.

Proof: Let A be g^*-closed fuzzy set in a fts X. Let $F \leq \text{cl}(A) \land (1 - A)$, F is g-closed in X. By the theorem 3.2.12, F is zero and so $F \leq \text{int} (\text{cl}(A) \land (1 - A))$. By the theorem 3.2.19, $\text{cl}(A) \land (1 - A)$ is g^*-open in fts X.

Fuzzy g^*-closure ($g^* \text{cl}$) and fuzzy g^*-interior ($g^* \text{ - int}$) of a fuzzy set are defined as follows.

3.2.30 Definition: For any fuzzy set A in any fts, $g^* \text{cl}(A) = \land \{ U : U \text{ is } g^* \text{- closed fuzzy set and } A \leq U \}$

$g^* \text{ int}(A) = \lor \{ V : V \text{ is } g^* \text{- open and } A \geq V \}$

3.2.31 Theorem: Let A be any fuzzy set in a fts (X, T). Then $g^* \text{cl}(A') = g^* \text{ cl}(1 - A) = 1 - g^* \text{ int}(A)$

$g^* \text{ int}(1 - A) = 1 - g^* \text{ cl}(A)$

Proof: We see that a g^*-open fuzzy set $U \leq A$ is precisely the complement of a g^*-closed set $V \geq 1 - A$, thus $g^* \text{ int}(A) = \lor \{ 1 - V : V \text{ is } g^* \text{- closed fuzzy set and } V \geq 1 - A \}$
\[g^* \text{ int}(A) = 1 - g^* \text{ cl}(1 - A) \]
That is \(g^* \text{ cl}(1 - A) = 1 - g^* \text{ int}(A) \)

Let \(g \) be any \(g^* \)-open fuzzy set. Then for any \(g^* \)-closed fuzzy set \(f \geq A, \ g = 1 - f \leq 1 - A \).

Now \(g^* \text{ cl}(A) = \bigwedge \{ 1 - g : g \text{ is } g^* \text{-open fuzzy set and } g \leq 1 - A \} \)
\[= 1 - \bigvee \{ g : g \text{ is } g^*- \text{open and } g \leq 1 - A \} \]
\[= 1 - g^* \text{ int} (1 - A) \]
Therefore \(g^* \text{ int}(1 - A) = 1 - g^* \text{ cl}(A) \).

3.2.32 **Theorem:** In a fts \((X, T)\) a fuzzy set \(A \) is \(g^* \)-closed iff \(A = g^* \text{ cl}(A) \).

Proof: Let \(A \) be a \(g^* \)-closed fuzzy set in fts \((X, T)\). Since \(A \leq A \) and \(A \) is \(g^* \)-closed, \(A \in \{ f : f \text{ is a } g^* \text{-closed fuzzy set and } A \leq f \} \) and \(A \leq f \) implies that \(A = \bigwedge \{ f : f \text{ is } g^*- \text{closed and } A \leq f \} \) that is \(A = g^* \text{ cl}(A) \).

Conversely, suppose that \(A = g^* \text{ cl}(A) \), that is \(A = \bigwedge \{ f : f \text{ is a } g^*- \text{closed fuzzy set and } A \leq f \} \). This implies that \(A \in \{ f : f \text{ is a } g^*- \text{closed fuzzy set and } A \leq f \} \). Hence \(A \) is \(g^* \)-closed fuzzy set.

3.2.33 **Theorem:** In a fts \(X \) the following results hold for \(g^* \)-closure.

1) \(g^* \text{ cl}(0) = 0 \).
2) \(g^* \text{ cl}(A) \) is \(g^* \)-closed fuzzy set in \(X \).
3) \(g^* \text{ cl}(A) \leq g^* \text{ cl}(B) \) if \(A \leq B \).
4) \(g^* \text{ cl}(g^* \text{ cl}(A)) = g^* \text{ cl}(A) \).
5) \(g^* \text{ cl}(A \lor B) \geq g^* \text{ cl}(A) \lor g^* \text{ cl}(B) \).
6) \(g^* \text{ cl}(A \land B) \leq g^* \text{ cl}(A) \land g^* \text{ cl}(B) \).

Proof: The easy verification is omitted.

3.2.34 **Theorem:** In a fts \(X \), a fuzzy set \(A \) is \(g^* \)-open iff \(A = g^* \text{ int}(A) \).
Proof: Let A be g^*-open fuzzy set in X. Since $A \leq A$ and A is g^*-open and $A \in \{ f : f \text{ is a } g^*\text{-open fuzzy set and } A \geq f \}$ and $A \geq f$ implies that $A = \bigvee \{ f : f \text{ is } g^*\text{-open and } A \geq f \}$. That is $A = g^* \text{ int} (A)$.

Conversely, suppose that $A = g^* \text{ int}(A)$, that is $A = \bigvee \{ f : f \text{ is } g^*\text{-open and } A \geq f \}$. This implies that $A \in \{ f : f \text{ is } g^*\text{-open and } A \geq f \}$. Hence A is g^*-open fuzzy set.

3.2.35 Theorem: In a fts X, the following hold for g^*-interior.
1) $g^* \text{ int} (0) = 0$
2) $g^* \text{ int} (A) \leq g^* \text{ int} (B)$ if $A \leq B$.
3) $g^* \text{ int} (A)$ is g^*-open in X.
4) $g^* \text{ int} (g^* \text{ int} (A)) = g^* \text{ int}(A)$.
5) $g^* \text{ int} (A \vee B) \geq g^* \text{ int}(A) \vee g^* \text{ int}(B)$.
6) $g^* \text{ int} (A \wedge B) \leq g^* \text{ int}(A) \wedge g^* \text{ int}(B)$.
Proof: The routine proof is omitted.

3.2.36 Definition: A fts X is called a fuzzy - $T^*_{1/2}$ if every g^*-closed fuzzy set is a closed fuzzy set.

3.2.37 Theorem: A fts X is fuzzy - $T^*_{1/2}$ iff every g^*-open fuzzy set is open in X.
Proof: Suppose X is fuzzy - $T^*_{1/2}$. Let V be g^*-open fuzzy set in X. Then $1 - V$ is g^*-closed. Since X is fuzzy - $T^*_{1/2}$, $1 - V$ is closed in X. Therefore V is open in X.

Conversely, assume that every g^*-open fuzzy set in X is open in X. Let F be g^*-closed in X, then $1 - F$ is g^*-open in X. By hypothesis, $1 - F$ is open in X. Therefore F is closed in X. Hence X is fuzzy - $T^*_{1/2}$.

3.2.38 Theorem: Every fuzzy - $T_{1/2}$ space is fuzzy - $T^*_{1/2}$.
Proof: Let X be a fuzzy - $T_{1/2}$ space. Let F be g^*-closed fuzzy set in X. Then F is g^*-closed in X. Since X is fuzzy - $T_{1/2}$, F is closed in X. Hence X is fuzzy - $T^*_{1/2}$.
The converse of the above theorem need not be true as seen from the following example.

3.2.39 Example: Let $X = \{a, b, c\}$. The fuzzy sets A, B and C defined as follows: $A = \{(a, 1), (b, 0), (c, 0)\}$, $B = \{(a, 0), (b, 1), (c, 1)\}$ and $C = \{(a, 0), (b, 1), (c, 0)\}$. Then (X, T) is a fts with $T = \{0, 1, A\}$. Then (X, T) is fuzzy-$T^{*}_{1/2}$ as g^{*}-closed fuzzy set B is closed in X. But (X, T) is not fuzzy-$T_{1/2}$ since g-closed fuzzy set C is not closed in X.

3.2.40 Definition: A fts X is called fuzzy-$T_{1/2}$ if every g-closed fuzzy set of X is a g^{*}-closed fuzzy set.

3.2.41 Theorem: Every fuzzy-$T_{1/2}$ space is fuzzy-$T^{*}_{1/2}$ space.

Proof: Let X be a fuzzy-$T_{1/2}$ space. Let A be g-closed fuzzy set of X. Since X is a fuzzy-$T_{1/2}$ space, the set A is closed and so A is g^{*}-closed in X. Hence X is fuzzy-$T_{1/2}$ space.

The converse of the above theorem need not be true as shown in the following example.

3.2.42 Example: Let $X = \{a, b, c\}$. Fuzzy sets A, B and C be defined as follows: $A = \{(a, 1), (b, 0), (c, 0)\}$, $B = \{(a, 0), (b, 1), (c, 1)\}$ and $C = \{(a, 0), (b, 1), (c, 0)\}$. Let (X, T) be fts with $T = \{0, 1, A, B\}$. Then X is fuzzy-$T^{*}_{1/2}$ fts but not fuzzy-$T_{1/2}$ as the fuzzy set C is g-closed and is g^{*}-closed but not closed.

3.2.43 Theorem: A fts X is fuzzy-$T_{1/2}$ iff it is fuzzy-$T^{*}_{1/2}$ and fuzzy-$T^{*}_{1/2}$.

Proof: Suppose X is fuzzy-$T_{1/2}$. By the theorem 3.2.38 and 3.2.41, it follows that X is fuzzy-$T^{*}_{1/2}$ and fuzzy-$T^{*}_{1/2}$.

Conversely, suppose X is both fuzzy-$T^{*}_{1/2}$ and fuzzy-$T^{*}_{1/2}$. Let A be g-closed in X. Since X is fuzzy-$T^{*}_{1/2}$, A is g^{*}-closed. Also, since X is fuzzy-$T^{*}_{1/2}$, A is closed fuzzy set. Thus X is fuzzy-$T_{1/2}$ fts.

3.2.44 Theorem: A fts X is fuzzy-$T_{1/2}$ iff every g-open fuzzy set in X is g^{*}-open in X.
Proof: Assume that X is fuzzy *$T_{1/2}$. Let v be g-open fuzzy set in X. Then $1 - v$ is g^*-closed in X since X is fuzzy *$T_{1/2}$. Therefore V is g^*-open in X.

Conversely, assume that every g-open fuzzy set in X is g^*-open in X. Let F be g-closed in X. Then $1 - F$ is g-open in X. By hypothesis, $1 - F$ open in X. Therefore F is closed fuzzy set in X.

3.2.45 Remark: The two concepts fuzzy *$T_{1/2}$ and fuzzy-$T_{1/2}$ are independent of each other as seen from the next two examples.

3.2.46 Example: Let $X = \{a, b, c\}$. Define the fuzzy sets A, B and C as follows: $A = \{(a, 1), (b, 0), (c, 0)\}$, $B = \{(a, 0), (b, 1), (c, 1)\}$ and $C = \{(a, 0), (b, 1), (c, 0)\}$. Let $T = \{0, 1, A, B\}$. Then T is fuzzy topology on X. Then X is not fuzzy *$T_{1/2}$ as the fuzzy set C is g-closed but not g^*-closed. And X is fuzzy *$T^*_{1/2}$.

3.2.47 Example: In the example 3.2.42, X is fuzzy-$T_{1/2}$ but not fuzzy-$T^*_{1/2}$ as the set C is g^*-closed in X but not closed fuzzy set in X.

3.3 g^*-CONTINUOUS AND OTHER RELATED MAPS IN FTS

In this section the concepts of fuzzy g^*-continuous, g^*-irresolute functions and g^*-homeomorphism have been introduced and studied. We also introduce the concepts of g^*-open and g^*-closed mappings in fuzzy topological spaces.

3.3.1 Definition: Let X and Y be two fts. A function $f : X \to Y$ is said to be fuzzy g^*-continuous (f g^*-continuous) if the inverse image of every open fuzzy set in Y is g^*-open in X.

3.3.2 Theorem: A function $f : X \to Y$ is f g^*-continuous iff the inverse image of every closed fuzzy set in Y is g^*-closed in X.

Proof: Suppose the function $f : X \to Y$ is fg^*-continuous. Let F be closed fuzzy set in Y. Then $1 - F$ is open fuzzy set in Y. Since f is
fg* - continuous, \(f^{-1}(1 - F) \) is \(g^* \)-open in \(X \). But \(f^{-1}(1 - F) = 1 - f^{-1}(F) \) and so \(f^{-1}(F) \) is \(g^* \)-closed in \(X \).

Conversely, assume that the inverse image of every closed fuzzy set in \(Y \) is \(g^* \)-closed in \(X \). Let \(V \) be open fuzzy set in \(Y \). Then \(1 - V \) is closed in \(Y \). By hypothesis, \(f^{-1}(1 - V) \) is \(g^* \)-closed fuzzy set in \(X \). But \(f^{-1}(1 - V) = 1 - f^{-1}(V) \) and so \(f^{-1}(V) \) is \(g^* \)-open fuzzy set in \(X \). Hence \(f \) is \(fg^* \)-continuous.

3.3.3 **Theorem:** Every fuzzy-continuous function is \(fg^* \)-continuous.

Proof: Let \(f : X \rightarrow Y \) be \(f \)-continuous. Let \(F \) be closed fuzzy set in \(Y \). Then \(f^{-1}(F) \) is closed fuzzy set in \(X \) since \(f \) is fuzzy continuous. And therefore \(f^{-1}(F) \) is \(g^* \)-closed in \(X \). Hence \(f \) is \(fg^* \)-continuous.

The converse of the above theorem need not be true as seen from the following example.

3.3.4 **Example:** Let \(X = Y = \{a, b, c\} \). Fuzzy sets \(A, B \) and \(C \) be defined as follows: \(A = \{(a, 0), (b, .1), (c, .2)\} \), \(B = \{(a, .4), (b, .5), (c, .7)\} \) and \(C = \{(a, 1), (b, .9), (c, .8)\} \). Consider \(T = \{0, 1, B\} \), \(\sigma = \{0, 1, A\} \). Then \((X, T) \) and \((Y, \sigma) \) are fts. Define \(f : X \rightarrow Y \) by \(f(a) = a \), \(f(b) = b \) and \(f(c) = c \). Then \(f \) is \(fg^* \)-continuous but not \(f \)-continuous as the fuzzy set \(C \) is closed in \(Y \) and \(f^{-1}(C) = C \) is not closed in \(X \) but \(g^* \)-closed in \(X \).

3.3.5 **Theorem:** Every \(fg^* \)-continuous function is \(fg \)-continuous.

Proof: Let \(f : X \rightarrow Y \) be \(fg^* \)-continuous. Let \(F \) be a closed fuzzy set in \(Y \). Since \(f \) is \(fg^* \)-continuous, \(f^{-1}(F) \) is \(g^* \)-closed in \(X \). And therefore \(f^{-1}(F) \) is \(g \)-closed in \(X \) as every \(g^* \)-closed fuzzy set is \(g \)-closed. Hence \(f \) is \(fg \)-continuous.

The converse of the above theorem need not be true as seen from the following example.

3.3.6 **Example:** Let \(X = \{a, b, c\} \). Fuzzy sets \(A, B \), and \(C \) be defined as follows: \(A = \{(a, 1), (b, 0), (c, 0)\} \), \(B = \{(a, 0), (b, 1), (c, 1)\} \), and
C = {(a, 0), (b, 1), (c, 0)}. Consider T = {0, 1, A, B} then (X, T) is fts. Define \(f : X \to Y \) by \(f(a) = b, f(b) = a \) and \(f(c) = c \). Then \(f \) is \(fg \)-continuous but not \(fg^* \)-continuous as the inverse image of closed fuzzy set \(A \) is \(f^{-1}(A) = C \) which is not \(g^* \)-closed.

3.3.7 Theorem: Every \(fg^* \)-continuous function is \(fb \)-continuous function.

Proof: Let \(f : X \to Y \) be \(fg^* \)-continuous function. Let \(F \) be closed fuzzy set in \(Y \). Then \(f^{-1}(F) \) is \(g^* \)-closed in \(X \). And so \(f^{-1}(F) \) is \(b \)-closed in \(X \) as every \(g^* \)-closed fuzzy set is \(b \)-closed. Hence \(f : X \to Y \) is \(fb \)-continuous.

The converse of the above theorem need not be true as seen from the following example.

3.3.8 Example: Let \(X = Y = \{a, b, c\} \). Fuzzy sets \(A, B, C \) and \(D \) be defined as follows: \(A = \{(a, .2), (b, .5), (c, .3)\} \), \(B = \{(a, .8), (b, .5), (c, .7)\} \), \(C = \{(a, .5), (b, .2), (c, .3)\} \) and \(D = \{(a, .5), (b, .8), (c, .7)\} \). Consider \(T = \{0, 1, A\}, \sigma = \{0, 1, A, B\} \). Then (\(X, T \)) and (\(Y, \sigma \)) are fts. Define \(f : X \to Y \) by \(f(a) = b, f(b) = a, f(c) = c \). Then \(f \) is \(fb \)-continuous but not \(fg^* \)-continuous as \(A \) is closed in \(Y \), but \(f^{-1}(A) = C \) is not \(g^* \)-closed in \(X \).

3.3.9 Theorem: If \(f : X \to Y \) is \(fg^* \)-continuous and \(X \) is fuzzy -\(T'_{1/2} \) fts. Then \(f \) is fuzzy -continuous.

Proof: Let \(f : X \to Y \) be \(fg^* \)-continuous. Let \(F \) be closed fuzzy set in \(Y \). Then \(f^{-1}(F) \) is \(g^* \)-closed in \(X \) since \(f \) is \(fg^* \)-continuous. Also since \(X \) is fuzzy -\(T'_{1/2} \), \(f^{-1}(F) \) is closed in \(X \). Hence \(f \) is \(f \)-continuous.

3.3.10 Theorem: If \(f : X \to Y \) is \(fg \)-continuous and \(X \) is fuzzy -\(T_{1/2} \) fts. Then \(f \) is \(fg^* \)-continuous.

Proof: Let \(f : X \to Y \) be \(fg \)-continuous. Let \(F \) be closed fuzzy set in \(Y \), then \(f^{-1}(F) \) is \(g \)-closed in \(X \). Since \(X \) is fuzzy -\(T_{1/2} \), \(f^{-1}(F) \) is \(g^* \)-closed in \(X \). Hence \(f \) is \(fg^* \)-continuous.
3.3.11 **Theorem:** If a function $f : X \rightarrow Y$ is fb - continuous and X is a fb - space, then f is fg^* - continuous function.

Proof: Let F be closed fuzzy set in Y. Then $f^{-1}(F)$ is b-closed in X, since f is fb-continuous. And so $f^{-1}(F)$ is closed fuzzy set in X as X is fb - space. Therefore $f^{-1}(F)$ is g^*- closed in X. Hence f is fg^*- continuous.

3.3.12 **Theorem:** Every strongly f-continuous function is fg^*- continuous.

Proof: Let $f : X \rightarrow Y$ be a strongly fuzzy continuous. Let F be closed fuzzy set in Y. Then $f^{-1}(F)$ is open and closed in X. And therefore $f^{-1}(F)$ is g^*- closed in X. Hence f is fg^* - continuous.

The converse of the above theorem need not be true as seen from the following example.

3.3.13 **Example:** In the example 3.3.4, the function f is fg^* - continuous but not strongly f- continuous, for the fuzzy set C in Y, $f^{-1}(C) = C$ is not both open and closed in X.

3.3.14 **Theorem:** Every perfectly f-continuous function is fg^*-continuous.

Proof: Let $f : X \rightarrow Y$ be a perfectly f - continuous. Let V be open fuzzy set in Y. Then $f^{-1}(V)$ is both open and closed fuzzy set in X. And therefore $f^{-1}(V)$ is g^* - open in X. Hence f is fg^* - continuous.

The converse of the above theorem need not be true as seen from the following example.

3.3.15 **Example:** In the example 3.3.4, the function f is fg^*- continuous but not perfectly f - continuous as the fuzzy set A is open in Y and $f^{-1}(A) = A$ is not both open and closed in X.

3.3.16 **Theorem:** Every completely f - continuous function is fg^*- continuous.
Proof: Let $f: X \to Y$ be completely f-continuous. Let V be open fuzzy set in Y. Then $f^{-1}(V)$ is regular-open fuzzy set in X. And therefore $f^{-1}(V)$ is open and so $g^*-\text{open}$ in X. Hence f is fg^*-continuous.

The converse of the above theorem need not be true as shown from the following example.

3.3.17 Example: In the example 3.3.4, the function f is fg^*-continuous but not completely f-continuous as the fuzzy set A is open in Y and $f^{-1}(A) = A$ is not regular-open in X.

3.3.18 Theorem: If $f : X \to Y$ is fg^*-continuous and $g : Y \to Z$ is f-continuous then $gof : X \to Z$ is fg^*-continuous.

Proof: Let F be closed fuzzy set in Z. Then $g^{-1}(F)$ is closed in Y since g is f-continuous. And then $f^{-1}(g^{-1}(F))$ is g^*-closed in X since f is fg^*-continuous. Now $(gof)^{-1}(F) = f^{-1}(g^{-1}(F))$ is g^*-closed in X. Hence $gof : X \to Z$ is fg^*-continuous.

3.3.19 Theorem: If $f : X \to Y$ is fg^*-continuous and $g : Y \to Z$ is fg^*-continuous and Y is fuzzy $T_{1/2}^*$ space. Then $gof : X \to Z$ is fg^*-continuous.

Proof: Let F be closed fuzzy set in Z. Then $g^{-1}(F)$ is g^*-closed in Y since g is fg^*-continuous. Since Y is fuzzy $T_{1/2}^*$, $g^{-1}(F)$ is closed in Y. And then $f^{-1}(g^{-1}(F))$ is g^*-closed in X as f is fg^*-continuous. Now $(gof)^{-1}(F) = f^{-1}(g^{-1}(F))$ is g^*-closed in X. Hence gof is fg^*-continuous.

3.3.20 Theorem: If f is f-continuous, f-closed mapping of X onto Y and g is a mapping from Y to Z and X, Y are fuzzy $T_{1/2}^*$ spaces then gof is fg^*-continuous iff g is fg^*-continuous.

Proof: Suppose gof is fg^*-continuous. Let F be a closed fuzzy set of Z. Then $(gof)^{-1}(F) = f^{-1}(g^{-1}(F))$ is g^*-closed in X. Since X is fuzzy $T_{1/2}^*$,
f^{-1}(g^{-1}(F)) \text{ is closed. Also since } f \text{ is closed map, } f(f^{-1}(g^{-1}(F)) = g^{-1}(F) \text{ is closed in } Y \text{ and so } g^{-1}(F) \text{ is } g^*\text{-closed in } Y. \text{ Hence } g \text{ is } fg^*\text{-continuous.}

Conversely, suppose } g \text{ is } fg^*\text{-continuous. Let } F \text{ be closed fuzzy set of } Z. \text{ Then } g^{-1}(F) \text{ is } g^*\text{-closed in } Y. \text{ Since } Y \text{ is fuzzy } T^{*\frac{1}{2}}, g^{-1}(F) \text{ is closed in } Y. \text{ Also since } f \text{ is } f\text{-continuous, } f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F) \text{ is closed and so } g^*\text{-closed in } X. \text{ Hence } gof \text{ is } fg^*\text{-continuous.}

3.3.21 Theorem: Let } X, X_1 \text{ and } X_2 \text{ be fts and } p_i : X_i \times X_2 \to X_i (i = 1, 2) \text{ be the projection mappings. If } f : X \to X_1 \times X_2 \text{ is } fg^*\text{-continuous then the composition } p_i \circ f \text{ is } fg^*\text{-continuous.}

Proof: Let } V \text{ be open fuzzy set in } X_i (i = 1, 2), \text{ then } p_i^{-1}(V) (i = 1, 2) \text{ is open in } X_1 \times X_2 \text{ as the projection mapping } p_i \text{ is } f\text{-continuous [60]. Since } f \text{ is } fg^*\text{-continuous, } f^{-1}(p_i^{-1}(V)) = (p_i \circ f)^{-1}(V) (i = 1, 2) \text{ is } g^*\text{-open in } X. \text{ Hence } p_i \circ f \text{ is } fg^*\text{-continuous.}

3.3.22 Definition: A function } f : X \to Y \text{ is called } fg^*\text{-Irresolute function if the inverse image of every } g^*\text{-closed fuzzy set in } Y \text{ is } g^*\text{-closed in } X.

3.3.23 Theorem: A function } f : X \to Y \text{ is } fg^*\text{-Irresolute iff the inverse image of every } g^*\text{-open fuzzy set in } Y \text{ is } g^*\text{-open in } X.

Proof: The routine proof is omitted.

3.3.24 Theorem: Every } fg^*\text{-Irresolute function is } fg^*\text{-continuous.}

Proof: Let } f : X \to Y \text{ be } fg^*\text{-Irresolute function. Let } F \text{ be closed fuzzy set in } Y. \text{ Then } F \text{ is } g^*\text{-closed in } Y. \text{ Since } f \text{ is } fg^*\text{-Irresolute, } f^{-1}(F) \text{ is } g^*\text{-closed in } X. \text{ Hence } f \text{ is } fg^*\text{-continuous function.}

The converse of the above theorem need not be true as seen from the following example.

3.3.25 Example: Let } X = Y = \{a, b, c\}. \text{ Fuzzy sets } A, B, C \text{ and } D \text{ be defined as follows: } A = \{(a, 1), (b, 0), (c, 0)\}, \ B = \{(a, 0), (b, 1), (c, 0)\}, \ C = \{(a, 1), (b, 1), (c, 0)\} \text{ and } D = \{(a, 1), (b, 0), (c, 1)\}. \text{ Consider } T = \{0, 1, A, B, C, D\} \text{ and } \sigma = \{0, 1, C\} \text{ then } (X, T) \text{ and } (Y, \sigma) \text{ are fts.}
Define \(f : X \to Y \) by \(f(a) = b \), \(f(b) = c \), and \(f(c) = a \). Then \(f \) is \(\text{fg}* \)-continuous but not \(\text{fg}* \)-irresolute as the fuzzy set \(E = \{(a, 0), (b, 1), (c, 1)\} \) is \(g* \)-closed in \(Y \) but \(f^{-1}(E) = C \) is not \(g* \)-closed in \(X \).

3.3.26 **Theorem:** Let \(X \) be a fuzzy-\(T_{1/2} \) fts. If \(f : X \to Y \) is fuzzy gc-irresolute then \(f \) is \(\text{fg}* \)-irresolute.

Proof: Let \(F \) be \(g* \)-closed fuzzy set in \(Y \). Then \(F \) is \(g \)-closed in \(Y \). Since \(f \) is gc - irresolute, \(f^{-1}(F) \) is \(g \)-closed in \(X \). And then \(f^{-1}(F) \) is \(g* \)-closed in \(X \), since \(X \) is fuzzy \(T_{1/2} \). Hence \(f \) is \(\text{fg}* \)-irresolute function.

3.3.27 **Theorem:** Let \(Y \) be fuzzy-\(T_{1/2} \) fts. If \(f : X \to Y \) is \(\text{fg}* \)-irresolute then \(f \) is fuzzy gc- irresolute.

Proof: Let \(F \) be \(g \)-closed fuzzy set in \(Y \). Then \(F \) is \(g* \)-closed in \(Y \) since \(Y \) is fuzzy-\(T_{1/2} \). Since \(f \) is \(f \text{g*} \)-irresolute, \(f^{-1}(F) \) is \(g* \)-closed in \(X \) and so \(f^{-1}(F) \) is \(g \)-closed in \(X \). Hence \(f \) is fuzzy gc - irresolute.

3.3.28 **Theorem:** Let \(X \) be \(\text{fb} \)-space. If \(f : X \to Y \) is fuzzy \(\text{b} \)-irresolute then \(f \) is \(\text{fg}* \)-irresolute.

Proof: Let \(F \) be \(g* \)-closed \(\text{fb} \)-space in \(Y \). Then \(F \) is \(g* \)-closed in \(Y \). Since \(f \) is \(\text{fb} \)-irresolute, \(f^{-1}(F) \) is \(\text{b} \)-closed in \(X \). And therefore \(f^{-1}(F) \) is \(g* \)-closed in \(X \). Hence \(f \) is \(\text{fg}* \)-irresolute function.

3.3.29 **Theorem:** Let \(Y \) be \(\text{fb} \)-space. If \(f : X \to Y \) is \(\text{fg}* \)-irresolute then \(f \) is \(\text{fb} \)-irresolute function.

Proof: Let \(F \) be \(\text{b} \)-closed fuzzy set in \(Y \). Then \(F \) is \(\text{b} \)-closed \(\text{fb} \)-space in \(Y \) since \(Y \) is \(\text{fb} \)-space. And so \(F \) is \(g*- \)closed in \(Y \). Since \(f \) is \(\text{fg}* \)-irresolute, \(f^{-1}(F) \) is \(g*- \)-closed in \(X \) and \(\text{b} \)-closed in \(X \). Hence \(f \) is \(\text{fb} \)-irresolute function.

3.3.30 **Theorem:** Let \(Y \) be fuzzy - \(T_{1/2}^* \) space. If \(f : X \to Y \) is \(\text{fg}* \)-continuous then \(f \) is \(\text{fg}* \)-irresolute function.
Proof: Let F be g^*-closed in Y. Then F is closed in Y since Y is fuzzy - $T^{*,1/2}$. Since f is fg^*-continuous, $f^{-1}(F)$ is g^*-closed in X. And hence f is fg^*-irresolute function.

3.3.31 **Theorem:** Let $f : X \rightarrow Y$, $g : Y \rightarrow Z$ be two functions. If f and g are fg^*-irresolute functions then $gof : X \rightarrow Z$ is fg^*-irresolute function.

Proof: Let F be g^*-closed in Z, then $g^{-1}(F)$ is g^*-closed in Y since g is fg^*-irresolute. Since f is fg^*-irresolute, $f^{-1}(g^{-1}(F))$ is g^*-closed in X. That is $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is g^*-closed in X. Hence gof is fg^*-irresolute function.

3.3.32 **Theorem:** Let $f : X \rightarrow Y$, $g : Y \rightarrow Z$ be two functions. If f is fg^*-continuous and g is fg^*-irresolute and Y is fuzzy - $T^{*,1/2}$ then $gof : X \rightarrow Z$ is fg^*-irresolute function.

Proof: Let F be g^*-closed in Z, then $g^{-1}(F)$ is g^*-closed in Y since g is fg^*-irresolute. Since Y is fuzzy - $T^{*,1/2}$, $g^{-1}(F)$ is closed in Y and so $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is g^*-closed in X, since f is fg^*-continuous. Hence gof is fg^*-irresolute function.

3.3.33 **Theorem:** Let $f : X \rightarrow Y$, $g : Y \rightarrow Z$ be two functions. If f is fg^*-irresolute and g is fg^*-continuous then $gof : X \rightarrow Z$ is fg^*-continuous.

Proof: Let F be closed fuzzy set in Z. Then $g^{-1}(F)$ is g^*-closed in Y since g is fg^*-continuous. Since f is fg^*-irresolute, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is g^*-closed in X. Hence gof is fg^*-continuous.

3.3.34 **Theorem:** Let $f : X \rightarrow Y$ be an onto, fg^*-irresolute and a closed map. If X is a fuzzy - $T^{*,1/2}$, then Y is also fuzzy - $T^{*,1/2}$.

Proof: Let F be g^*-closed fuzzy set in Y. Then $f^{-1}(F)$ is g^*-closed in X since f is fg^*-irresolute. Since X is fuzzy - $T^{*,1/2}$, $f^{-1}(F)$ is closed in X. And so $f(f^{-1}(F)) = F$ is closed in Y as f is a closed and onto function. Hence Y is fuzzy - $T^{*,1/2}$ space.
3.3.35 **Theorem**: Let $f : X \to Y$ be a fuzzy g_c^* - irresolute and a closed map. Then $f (A)$ is a g^* - closed fuzzy set of Y for every g^* - closed fuzzy set A of X.

Proof: Let A be a g^* - closed fuzzy set of X. Let U be g^* - open fuzzy set of Y, such that $f(A) \leq U$. Since f is fuzzy g_c^* - irresolute, $f^{-1} (U)$ is a g^* - open fuzzy set of X. Since $A \leq f^{-1} (U)$ and A is a g^* - closed set of X, $\text{cl}(A) \leq f^{-1} (U)$. Then $f (\text{cl} (A)) \leq f(f^{-1}(U)) \leq U$. Since f is a closed map, $f(\text{cl}(A)) = \text{cl}(f (\text{cl} A))$. This implies that $\text{cl} (f (A)) \leq \text{cl}(f (\text{cl} (A))) \leq f(\text{cl} A) \leq U$. That is $\text{cl}(f(A)) \leq U$. Therefore $f (A)$ is a g^* - closed fuzzy set of Y.

We introduce the following.

3.3.36 **Definition**: A map $f : X \to Y$ is said to be fuzzy g^* - open if the image of every open fuzzy set in X is g^* - open fuzzy set in Y.

3.3.37 **Definition**: A map $f : X \to Y$ is said to be fuzzy g^* - closed if the image of every closed fuzzy set in X is g^* - closed in Y.

3.3.38 **Theorem**: Every fuzzy open map is fuzzy g^* - open.

Proof: Let $f : X \to Y$ be a fuzzy open map. Let V be an open fuzzy set in X. Then $f (V)$ is open in Y since f is fuzzy open map. And therefore $f (V)$ is g^* - open in Y. Hence f is fuzzy g^* - open map.

The converse of the above theorem need not be true as shown from the following example.

3.3.39 **Example**: Let $X = Y = \{a, b, c\}$. Fuzzy sets A, B and C be defined as follows: $A = \{(a, 0), (b, .1), (c, .2)\}$, $B = \{(a, .4), (b, .5), (c, .7)\}$ and $C = \{(a, 1), (b, .9), (c, .8)\}$. Consider $T = \{0, 1, A\}$, $\sigma = \{0, 1, B\}$. Then (X, T), (Y, σ) are fts. Define $f : X \to Y$ by $f (a) = a$, $f (b) = b$ and $f (c) = c$. Then f is fg^* - open map but not open map as the fuzzy set A is open in X, its image $f (A) = A$ is not open in Y which is g^* - open fuzzy set in Y.

3.3.40 **Theorem**: If $f : X \to Y$ is fg^*-open map and Y is a fuzzy T^*_1 - open map, then f is a open map.
Proof: Let \(f: X \to Y \) be a fuzzy \(g^* \)-open map. Let \(V \) be an open fuzzy set in \(X \). Then \(f(V) \) is \(g^* \)-open in \(Y \). Since \(Y \) is fuzzy-\(T^*_{1/2} \) space, \(f(V) \) is open fuzzy set in \(Y \). Hence \(f \) is open map.

3.3.41 Theorem: Every \(fg^* \)-open map is fuzzy \(g \)-open.

Proof: Let \(f: X \to Y \) be a \(fg^* \)-open map. Let \(V \) be an open fuzzy set in \(X \). Then \(f(V) \) is \(g^* \)-open in \(Y \) since \(f \) is \(fg^* \)-open map. And therefore \(f(V) \) is \(g \)-open fuzzy set in \(Y \). Hence \(f \) is fuzzy \(g \)-open map.

The converse of the above theorem need not be true as shown from the following example.

3.3.42 Example: Let \(X = Y = \{a, b, c\} \). Fuzzy sets \(A, B \) and \(C \) be defined as follows: \(A = \{(a, .2), (b, .5), (c, .3)\} \), \(B = \{(a, .8), (b, .5), (c, .7)\} \), \(C = \{(a, .5), (b, .2), (c, .3)\} \). Consider \(T = \{0, 1, A\} \), \(\sigma = \{0, 1, A, B\} \). (\(X, T \)) and (\(Y, \sigma \)) are fts. Define \(f: X \to Y \) by \(f(a) = b \), \(f(b) = a \), \(f(c) = c \).

Then the function \(f \) is fuzzy \(g \)-open map but not \(fg^* \)-open as the image of open fuzzy set \(A \) in \(X \) is \(f(A) = C \) is \(b \)-open but not \(g^* \)-open in \(Y \).

3.3.43 Theorem: If \(f: X \to Y \) is fuzzy \(g \)-open and \(Y \) is fuzzy-\(T^*_{1/2} \) space, then \(f \) is \(fg^* \)-open map.

Proof: Let \(V \) be an open fuzzy set in \(X \). Then \(f(V) \) is \(g \)-open in \(Y \). Since \(Y \) is fuzzy-\(T^*_{1/2} \), \(f(V) \) is \(g^* \)-open in \(Y \). And hence \(f \) is \(fg^* \)-open map.

3.3.44 Theorem: Every fuzzy closed map is \(fg^* \)-closed map.

Proof: Let \(f: X \to Y \) be fuzzy closed map. Let \(F \) be closed fuzzy set in \(X \). Then \(f(F) \) is closed in \(Y \). And therefore \(f(F) \) is \(g^* \)-closed in \(Y \). And hence \(f \) is \(fg^* \)-closed map.

The converse of the above theorem need not be true as shown from the following example.

3.3.45 Example: In the example 3.3.39 the function \(f \) is \(g^* \)-closed but not closed map as the fuzzy set \(C \) is closed in \(X \) and its image \(f(C) = C \) is \(g^* \)-closed in \(Y \) but not closed in \(Y \).
3.3.46 Theorem: If \(f: X \rightarrow Y \) is \(fg^* \) - closed and \(Y \) is fuzzy - \(T_{1/2}^* \). Then \(f \) is fuzzy closed map.

Proof: Let \(f: X \rightarrow Y \) be \(fg^* \) - closed map. Let \(F \) be closed fuzzy set in \(X \). Then \(f(F) \) is \(g^* \) - closed in \(Y \). Since \(Y \) is fuzzy - \(T_{1/2}^* \), \(f(F) \) is closed in \(Y \). Hence \(f \) is fuzzy closed map.

3.3.47 Theorem: A map \(f: X \rightarrow Y \) is \(fg^* \) - closed iff for each fuzzy set \(S \) of \(Y \) and for each open fuzzy set \(U \) such that \(f^{-1}(S) \leq U \) there is a \(g^* \) - open fuzzy set \(V \) of \(Y \) such that \(S \leq V \) and \(f^{-1}(V) \leq U \).

Proof: Suppose \(f \) is \(fg^* \) - closed map. Let \(S \) be a fuzzy set of \(Y \) and \(U \) be an open fuzzy set of \(X \) such that \(f^{-1}(U) \leq U \). Then \(V = Y - f(X - U) \) is a \(g^* \) - open fuzzy set in \(Y \) such that \(S \leq V \) and \(f^{-1}(V) \leq U \).

Conversely, suppose that \(F \) is a closed fuzzy set of \(X \). Then \(f^{-1}(Y - f(F)) \leq X - F \) and \(X - F \) is open. By hypothesis, there is a \(g^* \) - open fuzzy set \(V \) of \(Y \) such that \(Y - f(F) \leq V \) and \(f^{-1}(V) \leq X - F \). Therefore \(F \leq X - f^{-1}(V) \). Hence \(Y - V \leq f(F) \leq f(X - f^{-1}(V)) \leq Y - V \) which implies \(f(F) = Y - V \). Since \(Y - V \) is \(g^* \) - closed, \(f(F) \) is \(g^* \) - closed and thus \(f \) is a \(fg^* \) - closed map.

3.3.48 Theorem: If a map \(f: X \rightarrow Y \) is fuzzy gc-irresolute and \(fg^* \) - closed and \(A \) is \(g^* \) - closed fuzzy set of \(X \), then \(f(A) \) is \(g^* \) - closed in \(Y \).

Proof: Let \(f(A) \leq O \), where \(O \) is \(g \) - open in \(Y \). Since \(f \) is fuzzy gc- irresolute, \(f^{-1}(O) \) is a \(g \) - open fuzzy set such that \(A \leq f^{-1}(O) \). Hence \(\text{cl}(A) \leq f^{-1}(O) \) since \(A \) is \(g^* \) - closed fuzzy set . Since \(f \) is \(g^* \) - closed map \[\text{cl}(A) \text{ is closed in } X \], \(f(\text{cl}(A)) \) is \(g^* \) - closed and \(f(\text{cl}(A)) \leq O \), which implies \(\text{cl}(f(\text{cl} A)) \leq O \) since \(f(\text{cl} A) \) is \(g^* \) - closed set, that is \(\text{cl}(f(A)) \leq \text{cl}(f(\text{cl} A)) \leq O \), and so \(\text{cl}(f(A)) \leq O \). Hence \(f(A) \) is \(g^* \) - closed in \(Y \).
3.3.49 **Theorem:** Let $f : X \to Y$ be f-continuous and fuzzy g^*-closed. If A is g^*-closed fuzzy set in X and Y is fuzzy $T_{1/2}$ then $f(A)$ is g^*-closed in Y.

Proof: Let $f(A) \subseteq O$, where O is g-open in Y. Then O is open in Y since Y is fuzzy $T_{1/2}$. Since f is f-continuous, $f^{-1}(O)$ is an open and so g-open fuzzy set such that $A \subseteq f^{-1}(O)$. Hence $\text{cl}(A) \subseteq f^{-1}(O)$ as A is g^*-closed. Also since f is g^*-closed map [$\text{cl}(A)$ is closed in X], $f(\text{cl} A)$ is a g^*-closed and $f(f(\text{cl} A)) \subseteq O$. Which implies that $\text{cl}(f(\text{cl} A)) \subseteq O$ as $f(\text{cl} (A))$ is g^*-closed fuzzy set. Hence $\text{cl}(f(\text{cl} A)) \subseteq O$, that is $\text{cl}(f(A)) \subseteq O$. So $f(A)$ is g^*-closed in Y.

3.3.50 **Theorem:** If $f : X \to Y$ is fuzzy closed and $h : Y \to Z$ is fg^*-closed then $hof : X \to Z$ is fg^*-closed map.

Proof: Let F be closed fuzzy set in X. Then $f(F)$ is closed in Y. Since h is fg^*-closed, $h(f(F))$ is g^*-closed in Z. That is $(hof)(F) = h(f(F))$ is g^*-closed in Z. Hence hof is fg^*-closed map.

3.3.51 **Theorem:** If $f : X \to Y$ is fg^*-closed and $h : Y \to Z$ is fg^*-closed maps and Y is a fuzzy $T^*_{1/2}$ then $hof : X \to Z$ is fg^*-closed map.

Proof: Let F be closed fuzzy set in X. Then $f(F)$ is g^*-closed in Y. Since Y is a fuzzy $T^*_{1/2}$ space, $f(F)$ is closed in Y. And so $h(f(F))$ is g^*-closed in Z since h is fg^*-closed. That is $(hof)(F) = h(f(F))$ is g^*-closed in Z. Hence hof is fg^*-closed map.

3.3.52 **Theorem:** If f is a f-continuous, fg^*-closed map from a fuzzy normal space X onto a fts Y, then Y is fuzzy normal.

Proof: Let a, b be two closed fuzzy sets of Y such that $a \subseteq 1 - b$. Then $f^{-1}(a)$ and $f^{-1}(b)$ are closed fuzzy sets of X such that $f^{-1}(a) \subseteq 1 - f^{-1}(b)$. Since X is fuzzy normal, there exists open fuzzy sets u, v in X such that $f^{-1}(a) \subseteq u, f^{-1}(b) \subseteq v$ and $u \leq 1 - v$. Since f is fg^*-closed map, by theorem 3.3.47, there exists g^*-open fuzzy sets g, h in Y such that $a \leq g,
b \leq h, f^{-1}(g) \leq u and f^{-1}(h) \leq v. Since u \leq 1 - v, we have int(g), int(h) are open fuzzy sets such that g^* \leq 1 - h^*. Since g is g*-open, a is closed and so is g-closed and a \leq g implies a \leq int(g). Similarly b \leq int(h) and g^* \leq 1 - h^*. Hence Y is fuzzy normal.

The following is due to S.R. Malghan and S.S. Benchalli [31].

3.3.53 Theorem[31]: A fts (X, T) is regular iff for each x \in X and a g \in T with g(x) = 1 there exists h \in T with h(x) = 1, such that h \leq \bar{h} \leq g.

3.3.54 Theorem: Let f: X \rightarrow Y be an f-continuous, open and fg*-closed surjection. If X is regular fts then Y is regular.

Proof: Let q \in Y and p \in X such that f(p) = q. Let g be an open fuzzy set in Y such that g(q) = 1. Then (f^{-1}(g))(p) = g(f(p)) = 1 and f^{-1}(g) is open fuzzy set in X. Since X is regular, there is an open fuzzy set h in X such that h(p) = 1 and h \leq \bar{h} \leq f^{-1}(g). Since f is f-open, f(h) is an open fuzzy set such that (f(h))(q) = 1 and f(h) \leq f(\bar{h}) \leq g. Since f is fg*-closed, f(cl(h)) is g*-closed such that f(cl(h)) \leq g, g is open fuzzy set and so is g-open. It follows that cl(f(cl(h))) \leq g. And hence f(h) \leq cl(f(cl(h))) \leq cl(f(clh)) \leq g. That is f(h) \leq cl(f(h)) \leq g. Hence Y is regular fts.

3.3.55 Theorem: Let f : X \rightarrow Y, h : Y \rightarrow Z be two maps such that hof : X \rightarrow Z is fg*-closed map.

i) If f is f-continuous and surjective, then h is fg*-closed.

ii) If h is fg*-irresolute and injective, then f is fg*-closed.

Proof: (i) Let H be a closed fuzzy set of Y. Then f^{-1}(H) is closed in X and so (hof)(f^{-1}(H)) = h(H) is g*-closed in Z. Thus h is a g*-closed map.
Let F be a closed fuzzy set of X. Then \((\text{hof})(F)\) is \(g^*\) - closed in \(Z\) and so \(h^{-1}(\text{hof})(F)\) is \(g^*\) - closed in \(Y\). Since \(h\) is injective, \(f(F) = h^{-1}(\text{hof})(F)\) is \(g^*\) - closed in \(Y\). Therefore \(f\) is a \(fg^*\) - closed map.

3.3.56 Theorem: The function \(f : X \rightarrow Y\) is \(fg^*\) - closed and \(Y\) is fuzzy - \(T^*_{1/2}\), then for each open fuzzy set \(A \subseteq X\), \(\text{cl}(f(A)) \subseteq f(\text{cl}(A))\).

Proof: Suppose \(f\) is \(fg^*\) - closed map. If \(A\) is open, \(\text{cl}(A)\) is closed. Then \(f(\text{cl}(A))\) is \(g^*\) - closed in \(Y\) and hence \(f(\text{cl}(A))\) is closed as \(Y\) is fuzzy - \(T^*_{1/2}\). Since \(f(A) \subseteq f(\text{cl}(A))\), \(\text{cl}(f(A)) \subseteq \text{cl}(f(\text{cl}(A))) = f(\text{cl}(A))\).

That is \(\text{cl}(f(A)) \subseteq f(\text{cl}(A))\).

We introduce the following.

3.3.57 Definition: Let \(X\) and \(Y\) be fuzzy topological spaces. A bijection map \(f : X \rightarrow Y\) is called fuzzy \(g^*\) - homeomorphism (\(fg^*\) - homeomorphism) if \(f\) and \(f^{-1}\) are fuzzy \(g^*\) - continuous.

3.3.58 Theorem: Every fuzzy homeomorphism is fuzzy \(g^*\) - homeomorphism.

Proof: Follows from the two definitions involved.

The converse of the above theorem need not be true as seen from the following example.

3.3.59 Example: Let \(X = Y = \{a, b, c\}\). Fuzzy sets \(A\), \(B\) and \(C\) be defined as follows: \(A = \{(a, 1), (b, 0), (c, 0)\}\), \(B = \{(a, 1), (b, 1), (c, 0)\}\) and \(C = \{(a, 1), (b, 0), (c, 1)\}\). Consider \(T = \{0, 1, A, C\}\), \(\sigma = \{0, 1, B\}\). Then \((X, T)\) and \((Y, \sigma)\) are fts. Define \(f : X \rightarrow Y\) by \(f(a) = a, f(b) = c, f(c) = b\), then \(f\) is fuzzy \(g^*\) - homeomorphism but not fuzzy homeomorphism as \(A\) is open fuzzy set in \(X\) and its image \(f(A) = A\) is not open in \(Y\), \(f^{-1} : Y \rightarrow X\) is not \(f\) - continuous.

3.3.60 Theorem: Let \(f : X \rightarrow Y\) be a bijective function. Then the following are equivalent.

a) \(f\) is \(fg^*\) - homeomorphism
b) f is fg^* - continuous and fg^* - open maps.
c) f is fg^* - continuous and fg^* - closed maps.

Proof: (a) \Rightarrow (b): Let f be fg^* - homeomorphism. Then f is fg^* - continuous and f^{-1} is fg^* - continuous. To prove that f is fg^* - open map. Let U be an open fuzzy set in X. Then, since $f^{-1} : Y \to X$ is fg^* - continuous, $f(U) = (f^{-1})^{-1}(U)$ is fg^* - open in Y. Therefore $f(U)$ is fg^* - open in Y. Hence f is fg^* - open map.

(b) \Rightarrow (a): Let f be fg^* - open and fg^* - continuous map. To prove that $f^{-1} : Y \to X$ is fg^* - continuous. Let U be an open fuzzy set in X. Then $f(U)$ is fg^* - open in Y since f is fg^* - open map. Now $(f^{-1})^{-1}(U) = f(U)$ is fg^* - open in Y. Therefore $f^{-1} : Y \to X$ is fg^* - continuous. And hence f is fg^* - homeomorphism.

(b) \Rightarrow (c): Let f be fg^* - continuous and fg^* - open map. To prove that f is fg^* - closed map. Let F be a closed fuzzy set in X. Since f is fg^* - open map, $f(1 - F)$ is fg^* - open in Y. Now $f(1 - F) = 1 - f(F)$. Therefore $f(F)$ is fg^* - closed in Y. Hence f is a fg^* - closed map.

(c) \Rightarrow (b): Let f be fg^* - continuous and fg^* - closed map. To prove that f is fg^* - open map. Let U be an open fuzzy set in X. Then $1 - U$ is closed fuzzy set in X. Since f is a fg^* - closed map, $f(1 - U)$ is fg^* - closed in Y. Now $f(1 - U) = 1 - f(U)$. Therefore $f(U)$ is fg^* - open in Y. Hence f is fg^* - open map.

3.3.61 Theorem: If $f : X \to Y$ is fg^* - homeomorphism and $g : Y \to Z$ is fg^* - homeomorphism and Y is a fuzzy - $T^*_{1/2}$ then $gof : X \to Z$ is fg^* - homeomorphism.

Proof: To show that gof and $(gof)^{-1}$ are fg^* - continuous. Let U be an open fuzzy set in Z. Since $g : Y \to Z$ is fg^* - continuous, $g^{-1}(U)$ is fg^* - open in Y. Then $g^{-1}(U)$ is open fuzzy set in Y as Y is fuzzy - $T^*_{1/2}$.
Also since \(f : X \rightarrow Y \) is \(fg^* \)-continuous, \(f^{-1}(g^{-1}(U)) = (gof)^{-1}(U) \) is \(g^* \)-open in \(X \). Therefore \(gof \) is \(fg^* \)-continuous.

Again, let \(U \) be an open fuzzy set in \(X \). Since \(f^{-1} : Y \rightarrow X \) is \(fg^* \)-continuous, \((f^{-1})^{-1}(U) = f(U) \) is \(g^* \)-open in \(Y \). And so \(f(U) \) is open fuzzy set in \(Y \) as \(Y \) is fuzzy - \(T^*_{1/2} \). Also since \(g^{-1} : Z \rightarrow Y \) is \(fg^* \)-continuous, \((g^{-1})^{-1}(f(U)) = g(f(U)) \) is \(g^* \)-open in \(Z \). Therefore \(((gof)^{-1})^{-1}(U) = (gof)(U) \) is \(g^* \)-open in \(Z \). Hence \((gof)^{-1}\) is \(fg^* \)-continuous. Thus \(gof \) is \(fg^* \)-homeomorphism.

3.3.62 Definition:
A bijection map \(f : X \rightarrow Y \) is called \(fg^*c \)-homeomorphism if \(f \) and \(f^{-1} \) are \(fg^* \)-irresolute.

3.3.63 Remark:
The family of all \(fg^*c \)-homeomorphism (resp. \(fg^* \)-homeomorphism and fuzzy homeomorphism) from \((X, T)\) onto itself is denoted by \(fg^*c \ h(X, T) \) (resp. \(fg^* h \ (X, T) \) and \(f h (X,T) \)).

3.3.64 Theorem:
Let \(X, Y, Z \) be fuzzy topological spaces and \(f : X \rightarrow Y \), \(g : Y \rightarrow Z \) be \(fg^*c \)-homeomorphisms then their composition \(gof : X \rightarrow Z \) is \(fg^*c \)-homeomorphism.

Proof: Let \(U \) be \(g^* \)-open fuzzy set in \(Z \). Then since \(g : Y \rightarrow Z \) is \(fg^* \)-irresolute, \(g^{-1}(U) \) is \(g^* \)-open in \(Y \). Also since \(f : X \rightarrow Y \) is \(fg^* \)-irresolute, \(f^{-1}(g^{-1}(U)) = (gof)^{-1}(U) \) is \(g^* \)-open in \(X \). Therefore \(gof : X \rightarrow Z \) is \(fg^* \)-irresolute. Again, let \(U \) be a \(g^* \)-open fuzzy set in \(X \). Then, since \(f^{-1} : Y \rightarrow X \) is \(fg^* \)-irresolute, \((f^{-1})^{-1}(U) = f(U) \) is \(g^* \)-open in \(Y \). Also \(g^{-1} : Z \rightarrow Y \) is \(fg^* \)-irresolute, \((g^{-1})^{-1}(f(U)) = g(f(U)) = (gof)(U) \) is \(g^* \)-open in \(Z \). Therefore \((gof)^{-1} : Z \rightarrow X \) is \(fg^* \)-irresolute. And hence \(gof \) is \(fg^*c \)-homeomorphism.

3.3.65 Theorem:
Every \(fg^*c \)-homeomorphism is \(fg^* \)-homeomorphism.

Proof: Let \(f : X \rightarrow Y \) be \(fg^*c \)-homeomorphism. Then \(f \) and \(f^{-1} \) are \(fg^* \)-irresolute functions. And so \(f \) and \(f^{-1} \) are \(fg^* \)-continuous functions. And hence \(f \) is \(fg^* \)-homeomorphism.
Now, the stronger forms of fuzzy g^* - continuous functions namely strongly fg^* - continuous, perfectly fg^* - continuous and completely fg^* - continuous functions have been introduced and studied.

3.3.66 Definition: A function $f : X \rightarrow Y$ is called strongly fg^* - continuous if the inverse image of every g^* - open fuzzy set in Y is open in X.

3.3.67 Theorem: A function $f : X \rightarrow Y$ is strongly fg^* - continuous iff the inverse image of every g^* - closed fuzzy set in Y is closed in X.

Proof: Assume that f is strongly fg^* - continuous. Let F be g^* - closed in Y. Then $1 - F$ is g^* - open. Since f is strongly fg^* - continuous, $f^{-1}(1 - F)$ is open in X. But $f^{-1}(1 - F) = 1 - f^{-1}(F)$ and so $f^{-1}(F)$ is closed in X.

Conversely, suppose that the inverse image of every g^* - closed fuzzy set in Y is closed in X. Let V be g^* - open in Y, then $1 - V$ is g^* - closed in Y. By hypothesis, $f^{-1}(1 - V)$ is closed in X. Now $f^{-1}(1 - V) = 1 - f^{-1}(V)$ and so $f^{-1}(V)$ is open fuzzy set in X. Hence f is strongly fg^* - continuous.

3.3.68 Theorem: Every strongly fg^* - continuous function is a f - continuous function.

Proof: Let $f : X \rightarrow Y$ be strongly fg^* - continuous function. Let V be open fuzzy set in Y and so V is g^* - open in Y. Then $f^{-1}(V)$ is open in X. Hence f is f - continuous.

The converse of the above theorem need not be true as seen from the following example.

3.3.69 Example: Let $X = Y = \{a, b, c\}$. Fuzzy sets A, B and C be defined as follows: $A = \{(a, .6), (b, .5), (c, .7)\}$, $B = \{(a, .4), (b, .5), (c, .3)\}$ and $C = \{(a, .7), (b, .5), (c, .8)\}$. Consider $T = \{0, 1, A, B\}$ and $\sigma = \{0, 1, B\}$. Then (X, T) and (Y, σ) are fts. Define $f : X \rightarrow Y$ by $f(a) = a$, $f(b) = b$, $f(c) = c$. Now, f is strongly fg^* - continuous function.
\(f(c) = c \). Then \(f \) is \(f \)-continuous as \(B \) is open in \(Y \) and \(f^{-1}(B) = B \) is open in \(X \). But \(f \) is not strongly \(fg^* \)-continuous as the fuzzy set \(C \) is \(g^* \)-closed in \(Y \) and \(f^{-1}(C) = C \) is not closed in \(X \).

3.3.70 Theorem

Every strongly \(gf \)-continuous function is strongly \(fg^* \)-continuous.

Proof: Let \(f : X \to Y \) be strongly \(gf \)-continuous. Let \(V \) be \(g^* \)-open fuzzy set in \(Y \). Then \(V \) is \(g \)-open in \(Y \). And then \(f^{-1}(V) \) is open in \(X \) since \(f \) is strongly \(fg \)-continuous function. Hence \(f \) is strongly \(fg^* \)-continuous function.

3.3.71 Theorem

Every strongly \(f \)-continuous function is strongly \(fg^* \)-continuous.

Proof: Let \(f : X \to Y \) be strongly \(f \)-continuous function. Let \(v \) be \(g^* \)-open fuzzy set in \(Y \). Then \(f^{-1}(v) \) is both open and closed in \(X \) as \(f \) is strongly \(f \)-continuous. Hence \(f \) is strongly \(fg^* \)-continuous.

The converse of the above theorem need not be true as shown from the following example.

3.3.72 Example

Let \(X = Y = \{a, b, c\} \). Fuzzy sets \(A_1, A_2, A_3, A_4, A_5, A_6 \) be defined as follows: \(A_1 = \{(a, 1), (b, 0), (c, 0)\} \), \(A_2 = \{(a, 0), (b, 1), (c, 0)\} \), \(A_3 = \{(a, 0), (b, 0), (c, 1)\} \), \(A_4 = \{(a, 1), (b, 1), (c, 0)\} \), \(A_5 = \{(a, 1), (b, 0), (c, 1)\} \), \(A_6 = \{(a, 0), (b, 1), (c, 1)\} \). Consider \(T = \{0, 1, A_1, A_2, A_4\} \), \(\sigma = \{0, 1, A_4\} \). Then \((X, T) \) and \((Y, \sigma) \) are fts. Define \(f : X \to Y \) by \(f(a) = b, f(b) = a, f(c) = c \). Then \(f \) is strongly \(fg^* \)-continuous but not strongly \(f \)-continuous as the fuzzy set \(A_1 \) in \(Y \) is such that \(f^{-1}(A_1) = A_2 \) is open but not closed in \(X \).

3.3.73 Theorem

Let \(f : X \to Y \) be \(f \)-continuous and \(Y \) be fuzzy - \(T^*_1/2 \). Then \(f \) is strongly \(fg^* \)-continuous.
Proof: Let V be g^*-open fuzzy set in Y. Then V is open in Y since Y is fuzzy -$T^{*}_{1/2}$. And then $f^{-1}(V)$ is open in X as f is f-continuous. Hence f is strongly fg^*-continuous.

3.3.74 Theorem: If $f : X \rightarrow Y$ is strongly fg^*-continuous and Y is fuzzy -$T^{*}_{1/2}$, then f is strongly gf-continuous.

Proof: Let V be g-open fuzzy set in Y. Then V is g^*-open in Y, since Y is fuzzy -$T^{*}_{1/2}$. Since f is strongly fg^*-continuous, $f^{-1}(V)$ is open in X. Hence f is strongly gf-continuous.

3.3.75 Theorem: Every strongly fb-continuous function is strongly fg^*-continuous.

Proof: Let $f : X \rightarrow Y$ be strongly fb-continuous function. Let V be g^*-open fuzzy set in Y, then V is b-open in Y. And then $f^{-1}(V)$ is open in X since f is strongly fb-continuous function. Hence f is strongly fg^*-continuous function.

3.3.76 Theorem: If $f : X \rightarrow Y$ is strongly fg^*-continuous and Y is fb-space. Then f is strongly fb-continuous function.

Proof: Let V be b-open fuzzy set in Y. Then V is open in Y, since Y is fb-space. And so V is g^*-open in Y. Since f is strongly fg^*-continuous, $f^{-1}(V)$ is open in X. And hence f is strongly fb-continuous function.

3.3.77 Theorem: If $f : X \rightarrow Y$ is strongly fg^*-continuous and $g : Y \rightarrow Z$ is strongly fg^*-continuous. Then the composition map $gof : X \rightarrow Z$ is strongly fg^*-continuous function.

Proof: Let V be g^*-open fuzzy set in Z. Then $g^{-1}(V)$ is open in Y since g is strongly fg^*-continuous. And therefore $g^{-1}(V)$ is g^*-open in Y. Also since f is strongly fg^*-continuous, $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is open in X. Hence gof is strongly fg^*-continuous function.
3.3.78 Theorem: Let \(f : X \rightarrow Y, g : Y \rightarrow Z \) be maps such that \(f \) is strongly \(fg^* \)-continuous and \(g \) is \(fg^* \)-continuous then \(gof : X \rightarrow Z \) is \(f \)-continuous.

Proof: Let \(F \) be closed fuzzy set in \(Z \). Then \(g^{-1}(F) \) is \(g^* \)-closed in \(Y \) since \(g \) is \(fg^* \)-continuous. Also since \(f \) is strongly \(fg^* \)-continuous, \(f^{-1}(g^{-1}(F)) = (gof)^{-1}(F) \) is closed in \(X \). Hence \(gof \) is \(f \)-continuous.

3.3.79 Theorem: If \(f : X \rightarrow Y \) is strongly \(fg^* \)-continuous, \(g : Y \rightarrow Z \) is \(fg^* \)-irresolute then \(gof : X \rightarrow Z \) is strongly \(fg^* \)-continuous.

Proof: Let \(V \) be \(g^* \)-open fuzzy set in \(Z \). Then \(g^{-1}(V) \) is \(g^* \)-open in \(Y \) since \(g \) is \(fg^* \)-irresolute. And then \(f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \) is open in \(X \) since \(f \) is strongly \(fg^* \)-continuous. Hence \(gof \) is strongly \(fg^* \)-continuous.

3.3.80 Theorem: Every strongly \(fg^* \)-continuous image of a fuzzy compact space is fuzzy compact.

Proof: Let \(f : X \rightarrow Y \) be a strongly \(fg^* \)-continuous function from a fuzzy compact space \(X \) onto a fts \(Y \). Let \(\{U_\lambda : \lambda \in \Lambda \} \) be any fuzzy open cover of \(Y \) and so fuzzy \(g^* \)-open cover of \(Y \). Since \(f \) is strongly \(fg^* \)-continuous, \(\{f^{-1}(U_\lambda) : \lambda \in \Lambda \} \) is an open cover of \(X \). Since \(X \) is fuzzy compact, there is a finite sub cover \(\{f^{-1}(U_\lambda) : i = 1,2,...,n \} \) of \(\{f^{-1}(U_\lambda) \} \). If implies that \(\{U_{\lambda i} : i = 1,2,...,n \} \) is a finite sub cover of \(\{U_\lambda : \lambda \in \Lambda \} \). Hence \(f(X) = Y \) is fuzzy compact.

3.3.81 Definition: A function \(f : X \rightarrow Y \) is called perfectly \(fg^* \)-continuous if the inverse image of every \(g^* \)-open fuzzy set in \(Y \) is both open and closed fuzzy set in \(X \).

3.3.82 Theorem: A map \(f : X \rightarrow Y \) is perfectly \(fg^* \)-continuous iff the inverse image of every \(g^* \)-closed fuzzy set in \(Y \) is both open and closed fuzzy set in \(X \).

Proof: Assume that \(f \) is perfectly \(fg^* \)-continuous. Let \(F \) be \(g^* \)-closed fuzzy set in \(Y \). Then \(1 - F \) is \(g^* \)-open in \(Y \). And therefore \(f^{-1}(1 - F) \) is
both open and closed fuzzy set in \(X \). But \(f^{-1}(1 - F) = 1 - f^{-1}(F) \) and so \(f^{-1}(F) \) is both open and closed fuzzy set in \(X \).

Conversely, the inverse image of every \(g^*\)-closed fuzzy set in \(Y \) is both open and closed in \(X \). Let \(V \) be \(g^*\)-open fuzzy set in \(Y \). Then \(1 - V \) is \(g^*\)-closed in \(Y \). Then by hypothesis, \(f^{-1}(1 - V) \) is both open and closed fuzzy set in \(X \). But \(f^{-1}(1 - V) = 1 - f^{-1}(V) \). Therefore \(f^{-1}(V) \) is both open and closed fuzzy set in \(X \). Hence \(f \) is perfectly \(fg^* \)-continuous.

3.3.83 Theorem: Every perfectly \(fg^* \)-continuous function is \(f \)-continuous.

Proof: Let \(f : X \rightarrow Y \) be perfectly \(fg^* \)-continuous. Let \(v \) be open fuzzy set in \(Y \) and so \(v \) is \(g^*\)-open fuzzy set in \(Y \). Since \(f \) is perfectly \(fg^* \)-continuous, \(f^{-1}(v) \) is both open and closed fuzzy set in \(X \). That is \(f^{-1}(v) \) is open fuzzy set in \(X \). Hence \(f \) is \(f \)-continuous.

The converse of the above theorem need not be true as shown in the following example.

3.3.84 Example: In the example 3.3.69, the function \(f \) is \(f \)-continuous but not perfectly \(fg^* \)-continuous as the fuzzy set \(1 - C = \{(a, .3), (b, .5), (c, .2)\} \) is \(g^* \)-open in \(Y \) and \(f^{-1}(1 - C) = 1 - C \) which is not both open and closed in \(X \).

3.3.85 Theorem: Every perfectly \(fg^* \)-continuous function is perfectly \(f \)-continuous.

Proof: Let \(f : X \rightarrow Y \) be perfectly \(fg^* \)-continuous. Let \(v \) be open fuzzy set in \(Y \), then \(v \) is \(g^* \)-open in \(Y \). Since \(f \) is perfectly \(fg^* \)-continuous, \(f^{-1}(v) \) is both open and closed in \(X \) and hence \(f \) is perfectly \(f \)-continuous.

The converse of the above theorem need not be true as seen from the following example.

3.3.86 Example: In the example 3.3.69, the function \(f \) is perfectly \(f \)-continuous as the fuzzy set \(B \) is open in \(Y \) and its inverse image...
f^{-1}(B) = B is both open and closed in X. But f is not perfectly fg*-continuous as the fuzzy set \(1 - C = \{(a, .3), (b, .5), (c, .2)\}\) is g*-open in Y and \(f^{-1}(1 - C) = 1 - C\) is not both open and closed in X.

3.3.87 Theorem: Every perfectly gf-continuous function is perfectly fg*-continuous.

Proof: Let \(f: X \to Y\) be perfectly gf-continuous. Let \(v\) be g*-open fuzzy set in Y. Then \(v\) is g-open in Y. And then \(f^{-1}(v)\) is both open and closed in X. Hence \(f\) is perfectly fg*-continuous function.

3.3.88 Theorem: If \(f: X \to Y\) is perfectly f-continuous and Y is fuzzy - \(^*\)T_{1/2}. Then \(f\) is perfectly fg*-continuous.

Proof: Let \(v\) be g*-open in Y. Then \(v\) is open in Y as Y is fuzzy - \(^*\)T_{1/2}. Since \(f\) is perfectly f-continuous, \(f^{-1}(v)\) is both open and closed in X. And therefore \(f\) is perfectly fg*-continuous function.

3.3.89 Theorem: If \(f: X \to Y\) is perfectly fg*-continuous and Y is fuzzy - \(^*\)T_{1/2}. Then \(f\) is perfectly fg-continuous.

Proof: Let \(v\) be g-open fuzzy set in Y. Then \(v\) is g*-open in Y since Y is fuzzy - \(^*\)T_{1/2}. Since \(f\) is perfectly fg*-continuous, \(f^{-1}(v)\) is both open and closed in X. And hence \(f\) is perfectly fg-continuous function.

3.3.90 Theorem: Every perfectly fg*-continuous function is strongly fg*-continuous.

Proof: Let \(f: X \to Y\) be perfectly fg*-continuous. Let \(v\) be g*-open fuzzy set in Y. Then \(f^{-1}(v)\) is both open and closed in X. Therefore \(f^{-1}(v)\) is open in X. Hence \(f\) is strongly fg*-continuous.

The converse of the above theorem need not be true as seen from the following example.
3.3.91 Example: In the example 3.3.72, the function \(f \) is strongly \(\text{fg}^* \)-continuous but not perfectly \(\text{fg}^* \)-continuous as the fuzzy set \(A_3 \) is \(\text{g}^* \)-closed in \(Y \) and \(f^{-1}(A_3) = A_3 \) is not both open and closed in \(X \).

3.3.92 Theorem: Every perfectly \(\text{fb} \)-continuous function is perfectly \(\text{fg}^* \)-continuous.

Proof: Let \(f: X \rightarrow Y \) be perfectly \(\text{fb} \)-continuous. Let \(v \) be \(\text{g}^* \)-open in \(Y \). Then \(v \) is \(\text{b} \)-open in \(Y \). And then \(f^{-1}(v) \) is both open and closed in \(X \) since \(f \) is perfectly \(\text{fb} \)-continuous. Hence \(f \) is perfectly \(\text{fg}^* \)-continuous.

3.3.93 Theorem: If \(f : X \rightarrow Y \) is perfectly \(\text{fg}^* \)-continuous and \(Y \) is \(\text{fb} \)-space. Then \(f \) is perfectly \(\text{fb} \)-continuous.

Proof: Let \(v \) be \(\text{b} \)-open fuzzy set in \(Y \). Then \(v \) is open and so \(\text{g}^* \)-open in \(Y \) since \(Y \) is \(\text{fb} \)-space. And then \(f^{-1}(v) \) is both open and closed in \(X \), since \(f \) is perfectly \(\text{fg}^* \)-continuous. Hence \(f \) is perfectly \(\text{fb} \)-continuous function.

3.3.94 Theorem: If \(f : X \rightarrow Y, \ g : Y \rightarrow Z \) be two perfectly \(\text{fg}^* \)-continuous functions then \(g \circ f : X \rightarrow Z \) is perfectly \(\text{fg}^* \)-continuous function.

Proof: Let \(v \) be \(\text{g}^* \)-open fuzzy set in \(Z \). Then \(g^{-1}(v) \) is both open and closed in \(Y \), since \(g \) is perfectly \(\text{fg}^* \)-continuous. And therefore \(g^{-1}(v) \) is \(\text{g}^* \)-open in \(Y \). Also since \(f \) is perfectly \(\text{fg}^* \)-continuous, \(f^{-1}(g^{-1}(v)) = (g \circ f)^{-1}(v) \) is both open and closed in \(X \). Hence \(g \circ f \) is perfectly \(\text{fg}^* \)-continuous.

3.3.95 Theorem: If \(f : X \rightarrow Y \) is perfectly \(\text{fg}^* \)-continuous and \(g : Y \rightarrow Z \) is \(\text{fg}^*- \) irresolute function then \(g \circ f : X \rightarrow Z \) is perfectly \(\text{fg}^* \)-continuous function.

Proof: Let \(v \) be \(\text{g}^* \)-open fuzzy set in \(Z \). Then \(g^{-1}(v) \) is \(\text{g}^* \)-open in \(Y \) since \(g \) is \(\text{fg}^*- \) irresolute function. Also since \(f \) is perfectly
fg*-continuous, $f^{-1}(g^{-1}(v)) = (gof)^{-1}(v)$ is both open and closed in X. Hence gof is perfectly fg*-continuous.

3.3.96 Definition: A map $f : X \rightarrow Y$ is said to be completely fg*-continuous if the inverse image of every g*-open fuzzy set in Y is regular open fuzzy set in X.

3.3.97 Theorem: A map $f : X \rightarrow Y$ is completely fg*-continuous iff the inverse image of every g*-closed fuzzy set in Y is regular-closed fuzzy set in X.

Proof: Suppose f is completely fg*-continuous. Let F be g*-closed in Y. Then $1 - F$ is g*-open in Y. And then $f^{-1}(1 - F)$ is regular open in X. Now $f^{-1}(1 - F) = 1 - f^{-1}(F)$ and therefore $f^{-1}(F)$ is regular closed in X.

Conversely, assume that the inverse image of every g*-closed fuzzy set in Y is regular-closed in X. Let V be g*-open in Y. Then $1 - V$ is g*-closed in Y. By hypothesis, $f^{-1}(1 - V)$ is regular closed in X. Now $f^{-1}(1 - V) = 1 - f^{-1}(V)$. And therefore $f^{-1}(V)$ is regular open fuzzy set in X. Hence f is completely fg*-continuous function.

3.3.98 Theorem: Every completely fg*-continuous function is f-continuous.

Proof: Let $f : X \rightarrow Y$ be completely fg*-continuous function. Let V be open fuzzy set in Y. Then V is g*-open in Y. And then $f^{-1}(V)$ is regular open and therefore $f^{-1}(V)$ is open in X. Hence f is f-continuous.

The converse of the above theorem need not be true as seen from the following example.

3.3.99 Example: In the example 3.3.69, the function f is f-continuous but not completely fg*-continuous as the fuzzy set $1 - C$ is g*-open in Y and $f^{-1}(1 - C) = 1 - C$ is not regular-open in X.

3.3.100 Theorem: Every completely fg*-continuous function is completely f-continuous.
Proof: Let $f : X \rightarrow Y$ be completely f_{g^*}-continuous. Let V be open fuzzy set in Y. Then V is g^*-open in Y. And then $f^{-1}(V)$ is regular open in X. Hence f is completely f-continuous.

The converse of the above theorem need not be true as shown from the following example.

3.3.101 Example: In the example 3.3.69, the function f is completely f-continuous as the fuzzy set B is open in Y and $f^{-1}(B) = B$ is regular open in X. But f is not completely f_{g^*}-continuous as the fuzzy set $1 - C$ is g^*-open in Y and $f^{-1}(1 - C) = 1 - C$ is not regular open in X.

3.3.102 Theorem: Every completely f_{g^*}-continuous function is strongly f_{g^*}-continuous function.

Proof: Let $f : X \rightarrow Y$ be completely f_{g^*}-continuous. Let V be g^*-open in Y. Then $f^{-1}(V)$ is regular open in X. And therefore $f^{-1}(V)$ is open in X. Hence f is strongly f_{g^*}-continuous.

The converse of the above theorem need not be true as shown from the following example.

3.3.103 Example: In the example 3.3.72, the function f is strongly f_{g^*}-continuous but not completely f_{g^*}-continuous as the fuzzy set A_3 is g^*-closed in Y and its inverse image $f^{-1}(A_3) = A_3$ is not regular closed in X.

3.3.104 Theorem: If $f : X \rightarrow Y$ is completely f-continuous and Y is fuzzy $- T^*_{1/2}$. Then f is completely f_{g^*}-continuous function.

Proof: Let v be g^*-open in Y. Then v is open in Y since Y is fuzzy $- T^*_{1/2}$. Also since f is completely f-continuous, $f^{-1}(v)$ is regular open in X. And hence f is completely f_{g^*}-continuous function.

3.3.105 Theorem: Every completely f^b-continuous function is completely f_{g^*}-continuous function.
Proof: Let \(f: X \to Y \) be completely \(fb \) - continuous. Let \(v \) be \(g^* \) - open fuzzy set in \(Y \). Then \(v \) is \(b \) - open in \(Y \). And then \(f^{-1}(v) \) is regular open in \(X \). Hence \(f \) is completely \(fg^* \) - continuous function.

3.3.106 Theorem: If \(f: X \to Y \) is completely \(fg^* \) - continuous and \(Y \) is \(fb \) - space. Then \(f \) is completely \(fb \) - continuous function.

Proof: Let \(v \) be \(b \) - open fuzzy set in \(Y \). Then \(v \) is open in \(Y \) since \(Y \) is \(fb \) - space. And so \(v \) is \(g^* \) - open in \(Y \). Then \(f^{-1}(v) \) is regular open in \(X \) since \(f \) is completely \(fg^* \) - continuous. Hence \(f \) is completely \(fb \)-continuous function.

3.3.107 Theorem: If \(f: X \to Y \) is completely \(fg^*\)-continuous and \(g: Y \to Z \) is \(fg^* \) - irresolute function then \(gof: X \to Z \) is completely \(fg^* \) - continuous function.

Proof: Let \(v \) be \(g^* \) - open fuzzy set in \(Z \). Then \(g^{-1}(v) \) is \(g^* \) - open in \(Y \) since \(g \) is \(fg^* \) - irresolute. And then \(f^{-1}(g^{-1}(v)) = (gof)^{-1}(v) \) is regular open in \(X \). Hence \(gof \) is completely \(fg^* \) - continuous function.

3.3.108 Theorem: If \(f: X \to Y \) and \(g: Y \to Z \) be two completely \(fg^*\)-continuous functions then \(gof: X \to Z \) is completely \(fg^*\)-continuous function.

Proof: Let \(v \) be \(g^* \) - open fuzzy set in \(Z \). Then \(g^{-1}(v) \) is regular open in \(Y \) since \(g \) is completely \(fg^* \) - continuous. And so \(g^{-1}(v) \) is open and then \(g^* \) - open in \(Y \). Also since, \(f \) is completely \(fg^* \) - continuous function, \(f^{-1}(g^{-1}(v)) = (gof)^{-1}(v) \) is regular open in \(X \). And hence \(gof \) is completely \(fg^* \) - continuous function.

3.3.109 Theorem: Every completely \(fg^* \) - continuous image of a fuzzy nearly compact space is fuzzy compact.

Proof: Let \(f: X \to Y \) be a completely \(fg^* \) - continuous mapping from a fuzzy nearly compact space \(X \) onto a \(Y \). Let \(\{U_{\lambda}: \lambda \in \Lambda\} \) be any fuzzy open cover and so fuzzy \(g^*\)-open cover of \(Y \). Since \(f \) is completely
fg* - continuous, \{f^{-1}(U_\lambda) : \lambda \in \Lambda\} is a fuzzy regular open cover of X. Since X is fuzzy nearly compact space, there exist a finite sub cover \{f^{-1}(U_{\lambda_i}) : i = 1, \ldots, n\} of \{f^{-1}(U_\lambda)\}. It implies that \{U_{\lambda_i} : i = 1, 2, \ldots, n\} is a finite sub cover of \{U_\lambda : \lambda \in \Lambda\}. Hence \(f(X) = Y\) is fuzzy compact.

3.4 g*- COMPACTNESS AND OTHER RELATED CONCEPTS IN FTS

In this section the concepts of fuzzy g*- compactness, countable g*- compactness and g* - Lindelöf property have been introduced and studied.

It is also introduced, the concepts of g*- regular and g*- normal in fts and studied their properties.

3.4.1 Definition: A collection \{A_\lambda : \lambda \in \Lambda\} of g* - open fuzzy sets in a fts X is called g* - open cover of a fuzzy set B in X if \(B \leq \bigvee_{\lambda \in \Lambda} A_\lambda\).

3.4.2 Definition: A fts X is called g* - compact if every g* - open cover of X has a finite sub cover.

3.4.3 Definition: A fuzzy set A in fts X is said to be g* - compact relative to X if for every collection \{A_\lambda : \lambda \in \Lambda\} of g* - open fuzzy sets of X such that \(A \leq \bigvee_{\lambda \in \Lambda} A_\lambda\), there exists a finite subset \(\Lambda_0\) of \(\Lambda\) such that \(A \leq \bigvee_{\lambda \in \Lambda_0} A_\lambda\).

3.4.4 Definition: A fuzzy set A of X is said to be g* - compact if A is g* - compact relative to X.

3.4.5 Theorem: A g* - closed crisp subset of a g* - compact fts X is g* - compact.

Proof: Let \(Y\) be a g* - closed crisp sub space of g* - compact fts X. To prove that \(Y\) is g*-compact. Let \(\{U_\lambda : \lambda \in \Lambda\}\) be any g* - open cover of Y. Then \(u = \{U_\lambda : \lambda \in \Lambda\} \cup \{1 - Y\}\) is a g* - open cover of X. Let \(x \in X\) then \(x \in Y\) or \(x \notin Y\). If \(x \notin Y\), then \(x \in 1 - Y\). That is \((1 - Y)(x) = 1\).
where \(1 - Y \in \{ U_\lambda : \lambda \in \Lambda \} \cup \{ 1 - Y \} \). Suppose \(x \in Y \). Since \(\{ U_\lambda : \lambda \in \Lambda \} \) is \(g^* \)-open cover of \(Y \), there exists \(U_{\lambda_0} \) such that \(U_{\lambda_0}(x) = 1 \), thus \(u = \{ U_\lambda : \lambda \in \Lambda \} \cup \{ 1 - Y \} \) is \(g^* \)-open cover of \(X \). Since \(X \) is \(g^* \)-compact, \(u \) has a finite sub cover say \(u = \{ U_{\lambda_1}, \ldots, U_{\lambda_k} \} \cup \{ 1 - Y \} \) for \(X \). Then the family \(v = \{ U_{\lambda_1}, \ldots, U_{\lambda_k} \} \) is finite sub cover of \(\{ U_\lambda : \lambda \in \Lambda \} \) for \(Y \). Let \(x \in Y \). Then \(x \in X \) and \(x \notin 1 - Y \). Since \(u \) is a finite sub cover of \(X \), there exists \(U_{\lambda_i} \) (\(i = 1, 2, \ldots, k \)) such that \(U_{\lambda_i}(x) = 1 \). It follows that \(v \) is a \(g^* \)-open cover of \(Y \). Thus every \(g^* \)-open cover of \(Y \) has a finite sub cover. Hence \(Y \) is \(g^* \)-compact fts.

3.4.6 Theorem: The image of a \(fg^* \)-compact fts under a \(fg^* \)-continuous map is fuzzy compact.

Proof: Let \(f : X \to Y \) be a \(fg^* \)-continuous map from a \(g^* \)-compact fts \(X \) onto a fts \(Y \). Let \(u = \{ A_\lambda : \lambda \in \Lambda \} \) be a fuzzy open cover of \(Y \). Then the collection \(v = \{ f^{-1}(A_\lambda) : \lambda \in \Lambda \} \) is a \(g^* \)-open cover of \(X \), since \(f \) is \(fg^* \)-continuous. Since \(X \) is \(g^* \)-compact, \(v \) has a finite sub cover say \(\{ f^{-1}(A_{\lambda_1}), \ldots, f^{-1}(A_{\lambda_k}) \} \). Then \(\{ A_{\lambda_1}, \ldots, A_{\lambda_k} \} \) is a finite sub cover of \(u \) for \(Y \) and hence \(Y \) is fuzzy compact.

3.4.7 Theorem: If a map \(f : X \to Y \) is \(fg^* \)-irresolute and a subset \(B \) is \(fg^* \)-compact relative to \(X \), then the image \(f(B) \) is \(fg^* \)-compact relative to \(Y \).

Proof: Let \(\{ A_\lambda : \lambda \in \Lambda \} \) be any collection of \(g^* \)-open fuzzy sets of \(X \) such that \(f(B) \leq \bigvee_{\lambda \in \Lambda} A_\lambda \). Then \(B \leq \bigvee_{\lambda \in \Lambda} f^{-1}(A_\lambda) \). By hypothesis, there exists a finite subset \(\Lambda_0 \) of \(\Lambda \) such that \(B \leq \bigvee_{\lambda \in \Lambda_0} f^{-1}(A_\lambda) \). Therefore we have

\[f(B) \leq \bigvee_{\lambda \in \Lambda_0} A_\lambda. \]

Which shows that \(f(B) \) is \(fg^* \)-compact relative to \(Y \).
3.4.8 Theorem: The image of fg*- compact fts under a fg*- irresolute function is fg* - compact.

Proof: Let f : X → Y be fg*- irresolute function from a fg*-compact fts X onto a fts Y. Let u = {A_\lambda : \lambda \in \Lambda} be a g* - open cover of Y. Then the collection u' = {f^{-1}(A_\lambda) : \lambda \in \Lambda} is a g* - open cover of X, since f is fg* - irresolute function. Since X is fg* - compact, u' has a finite sub cover say v = {f^{-1}(A_{\lambda_1}), ..., f^{-1}(A_{\lambda_n})}. Then \{A_{\lambda_1}, ..., A_{\lambda_n}\} is a finite sub cover of Y. And hence Y is fg* - compact.

3.4.9 Theorem: Let f : X → Y be fg* - continuous map from a fg*- compact fts X onto fts Y. If Y is fuzzy - T*_{1/2} , then Y is fg* - compact.

Proof: Let X be a fg* - compact fts. Let u = {A_\lambda : \lambda \in \Lambda} be a g* - open cover of Y. Since Y is fuzzy - T*_{1/2} , the cover u is a open cover of X. Then the collection v = {f^{-1}(A_\lambda) : \lambda \in \Lambda} is a g* - open cover of X, since f is fg* - continuous. Also since X is fg* - compact, v has a finite sub cover say v' = {f^{-1}(A_{\lambda_1}), ..., f^{-1}(A_{\lambda_n})}. Then \{A_{\lambda_1}, ..., A_{\lambda_n}\} is a finite sub cover of Y. And hence Y is fg* - compact.

3.4.10 Theorem: Every fg* - compact space is fuzzy compact.

Proof: Let X be a fg* - compact fts. Let u = {A_\lambda : \lambda \in \Lambda} be an open cover of X. Therefore u = {A_\lambda : \lambda \in \Lambda} is a g*- open cover of X. Since X is g* - compact, u has a finite sub cover for X. Hence X is fuzzy compact.

3.4.11 Theorem: If X is fuzzy compact and a fuzzy-T*_{1/2} , then X is fg* - compact.

Proof: Let u = {A_\lambda : \lambda \in \Lambda} be a g*-open cover of X. Since X is fuzzy - T*_{1/2} , then the cover u is an open cover of X. Also, since X is fuzzy compact, u has a finite sub cover. Hence X is fg* - compact.

3.4.12 Theorem: Every fg - compact space is fg* - compact.
Proof: Let X be a fg-compact fts. Let $\{A_\lambda : \lambda \in \Lambda\}$ be a g^*-open cover of X. Since every g^*-open fuzzy set is g-open. The cover u is a g-open cover of X. Since X is fg-compact, the cover u has a finite sub cover. Hence X is fg^*-compact.

3.4.13 Theorem: If X is fg^*-compact and a fuzzy - $T_{1/2}$, then X is fg-compact.

Proof: Let $u = \{A_\lambda : \lambda \in \Lambda\}$ be a g-open cover of X. Since X is fuzzy-$T_{1/2}$, the cover u is a g^*-open cover of X. Since X is fg^*-compact, the cover u has a finite sub cover. Hence X is fg^*-compact.

3.4.14 Theorem: If $f: X \to Y$ is a strongly fg^*-continuous map from a fuzzy compact space X onto fts Y. Then Y is fg^*-compact.

Proof: Let $u = \{A_\lambda : \lambda \in \Lambda\}$ is a g^*-open cover of Y. Then $v = \{f^{-1}(A_\lambda) : \lambda \in \Lambda\}$ is an open cover of X, since f is strongly fg^*-continuous. Since X is f-compact, the cover v has a finite sub cover say $v = \{f^{-1}(A_{\lambda_1}),...,f^{-1}(A_{\lambda_n})\}$. Since f is onto then $\{A_{\lambda_1},...,A_{\lambda_n}\}$ is a finite sub cover of u for Y. Therefore Y is fg^*-compact.

3.4.15 Theorem: If $f: X \to Y$ is completely fg^*-continuous map from a nearly fuzzy compact fts X onto fts Y. Then Y is fg^*-compact.

Proof: Let $u = \{A_\lambda : \lambda \in \Lambda\}$ be any g^*-open cover of Y. Since f is completely fg^*-continuous, then $v = \{f^{-1}(A_\lambda) : \lambda \in \Lambda\}$ is a regular open cover of X. Also since X is nearly fuzzy compact, v has a finite sub cover say $\{f^{-1}(A_{\lambda_i}) : i=1,2,...,n\}$. Then $\{A_{\lambda_1},...,A_{\lambda_n}\}$is a finite sub cover of u for Y. Hence Y is fg^*-compact.

3.4.16 Theorem: A fts X is fg^*-compact iff every family of g^*-closed fuzzy sets of X having f. i.p. has a non-empty intersection.
Proof: Suppose X is a fg^*-compact fts. Let $G = \{G_\lambda : \lambda \in \Lambda\}$ be a family of g^*-closed fuzzy sets of X having f.i.p. To show that $\bigwedge_{\lambda \in \Lambda} G_\lambda \neq O$.

Assume to the contrary that $\bigwedge_{\lambda \in \Lambda} G_\lambda = O$. Then $\bigvee_{\lambda \in \Lambda} (1 - G_\lambda) = 1$. The cover $\{1 - G_\lambda : \lambda \in \Lambda\}$ is a g^*-open cover of X. Since X is fg^*-compact, the cover has a finite sub cover for X, there exists a finite sub set $\Lambda_0 \subseteq \Lambda$ such that $\bigvee_{\lambda \in \Lambda_0} (1 - G_\lambda) = 1$. And then $\bigwedge_{\lambda \in \Lambda_0} G_\lambda = 0$. Which contradicts the fact that G has f.i.p. Hence $\bigwedge_{\lambda \in \Lambda} G_\lambda \neq O$.

Conversely, assume that every family of g^*-closed fuzzy sets of X having f.i.p. has non-empty intersection. Let $G = \{G_\lambda : \lambda \in \Lambda\}$ be a g^*-open cover of X. Suppose to the contrary that for any finite $\Lambda_0 \subseteq \Lambda$, $\bigvee_{\lambda \in \Lambda_0} G_\lambda = 1$. And so $\bigwedge_{\lambda \in \Lambda_0} (1 - G_\lambda) = 0$. The family $\{1 - G_\lambda : \lambda \in \Lambda\}$ of g^*-closed fuzzy sets has f.i.p. And so by assumption $\bigwedge_{\lambda \in \Lambda} (1 - G_\lambda) \neq O$.

Which implies that $\bigvee_{\lambda \in \Lambda} G_\lambda = 1$. This contradicts that G is a cover for X. And hence G has a finite sub cover. Hence X is fg^*-compact.

3.4.17 Theorem: The image of a fg^*-compact fts under a strongly fg^*-continuous function is fg^*-compact fts.

Proof: The routine proof is omitted.

3.4.18 Definition: A fts X is said to be countably g^*-compact if every countable g^*-open cover of X has a finite sub cover.

3.4.19 Theorem: Every countably g^*-compact fts is countably compact fts.

Proof: Follows from the two concepts.
3.4.20 Theorem: If X is countably compact fts and a fuzzy - $T_{1/2}^*$ space, then X is countably g^*-compact.

Proof: The easy verification is omitted.

3.4.21 Theorem: Every g^*-compact fts is countably g^*-compact fts.

Proof: Follows from the two definitions.

3.4.22 Theorem: A g^*-closed crisp subset of a countably g^*-compact fts is countably g^*-compact.

Proof: Let Y be a g^*-closed crisp subspace of a countably g^*-compact fts X. To prove that Y is countably g^*-compact. Let $u = \{U_\lambda : \lambda \in \Lambda\}$ be any countable g^*-open cover of Y. Then $v = \{U_\lambda : \lambda \in \Lambda\} \cup \{1 - Y\}$ is a countable g^*-open cover of X. Let $x \in X$ then $x \in Y$ or $x \notin Y$. If $x \notin Y$, then $x \in 1 - Y$. That is $(1 - Y)(x) = 1$. Where $1 - Y \in \{U_\lambda : \lambda \in \Lambda\} \cup \{1 - Y\}$.

Suppose $x \in Y$. Since $\{U_\lambda : \lambda \in \Lambda\}$ is countable g^*-open cover of Y, there exists U_{λ_0} such that $U_{\lambda_0}(x) = 1$. Thus $v = \{U_\lambda : \lambda \in \Lambda\} \cup \{1 - Y\}$ is a countable g^*-open cover of X. Since X is countably g^*-compact fts, v has a finite sub cover say $v' = \{U_{\lambda_1}, U_{\lambda_2}, \ldots, U_{\lambda_k}\} \cup \{1 - Y\}$ for X. Then the family $u' = \{U_{\lambda_1}, U_{\lambda_2}, \ldots, U_{\lambda_k}\}$ is a finite sub cover of u for Y. Let $x \in Y$, then $x \in X$ and $x \notin 1 - Y$, since v' is a finite sub cover of X, there exists U_{λ_i} ($i = 1, \ldots, k$) such that $U_{\lambda_i}(x) = 1$. It follows that u' is a finite g^*-open cover of Y. Thus every countable g^*-open cover u of Y has a finite sub cover u. Hence Y is a countably g^*-compact fts.

3.4.23 Theorem: The image of a countably g^*-compact fts under a fg^*-continuous map is countably fuzzy compact.

Proof: Let $f : X \rightarrow Y$ be fg^*-continuous map from a countably g^*-compact fts X onto fts Y. Let $u = \{U_\lambda : \lambda \in \Lambda\}$ be a countable open cover of Y by open fuzzy sets in Y. Then the collection $v = \{f^{-1}(U_\lambda) : \lambda \in \Lambda\}$ is countable g^*-open cover of X, since f is fg^*-continuous function. Since X is countably g^*-compact, v has a finite
sub cover say \{f^{-1}(U_{\lambda_1}), f^{-1}(U_{\lambda_2}), \ldots, f^{-1}(U_{\lambda_n})\}. Then \{U_{\lambda_1}, U_{\lambda_2}, \ldots, U_{\lambda_n}\} is a finite sub cover of Y. And hence Y is countably fuzzy compact.

3.4.24 Theorem: The image of a countably g*-compact fts under fg*- irresolute map is countably g*- compact.

Proof: Let \(f : X \rightarrow Y \) be fg*- irresolute map from a countably g*- compact fts X onto fts Y. Let \(u = \{ U_{\lambda} : \lambda \in \Lambda \} \) be a countable g*- open cover for Y. Then \(v = \{ f^{-1}(U_{\lambda}) : \lambda \in \Lambda \} \) is countable g* - open cover for X, since \(f \) is fg*- irresolute function. Again since X is countably g*-compact, \(v \) has a finite sub cover say \{f^{-1}(U_{\lambda_i}) : i = 1, \ldots, k\}.

Therefore \(X = \bigvee_{i=1}^{k} f^{-1}(U_{\lambda_i}) \), implies

\[
Y = \bigvee_{i=1}^{k} U_{\lambda_i}.
\]

Therefore \(\{U_{\lambda_i} : i = 1, 2, \ldots, k\} \) is finite sub cover of \(u \) for Y. Hence Y is countably g*-compact.

3.4.25 Theorem: Let \(f : X \rightarrow Y \) be fg*- continuous map from a countably g* - compact fts X onto Y. If Y is fuzzy-T*_{1/2} space, then Y is countably g* - compact.

Proof: Follows easily.

3.4.26 Theorem: If \(f : X \rightarrow Y \) is strongly fg*-continuous map from a countably compact fts X onto fts Y. Then Y is countably g* - compact.

Proof: The routine proof is omitted.

3.4.27 Theorem: A fts X is countable g* - compact iff every countable family of g* - closed fuzzy sets of X having finite intersection property has a non-empty intersection.

Proof: The routine proof is not included.
3.4.28 **Definition:** A fts \((X, T)\) is said to be \(g^*\)-Lindelöf if every \(g^*\)-open cover of \(X\) has a countable sub cover.

This concept can be investigated and several results analogous to \(g\)-compact and compact fts can be obtained.

3.4.29 **Definition:** A fts \((X, T)\) is said to be \(g^*\)-regular fts if for each \(x \in X\) and a \(g^*\)-closed fuzzy set \(A\) with \(A(x) = 0\), there exist open fuzzy sets \(G, H\) such that \(G(x) = 1\), \(A < H\) and \(G < 1 - H\).

3.4.30 **Theorem:** Every \(g^*\)-regular fts is regular fts.

Proof: Follows from the two concepts.

3.4.31 **Example:** Let \(X = \{a, b, c\}\). Fuzzy sets \(A, B, C\) and \(D\) be defined as follows:
\[
A = \{(a, 1), (b, 0), (c, 0)\}, \quad B = \{(a, 0), (b, 1), (c, 1)\}, \\
C = \{(a, 0), (b, 1), (c, 0)\} \quad \text{and} \quad D = \{(a, 0), (b, 0), (c, 1)\}.
\]

\((X, T)\) is fts with topology \(T = \{0, 1, A, B\}\). Then \((X, T)\) is \(g^*\)-regular fts, \(a \in X\) and \(B\) is \(g^*\)-closed with \(B(a) = 0\), then \(A\) and \(B\) are open fuzzy sets such that \(A(a) = 1\), \(B \leq B\) and \(A \leq 1 - B\).

3.4.32 **Theorem:** Every \(b\)-regular fts is \(g^*\)-regular fts.

Proof: Let \(X\) be a \(b\)-regular fts. Let \(x \in X\) and \(A\) be \(fg^*\)-closed in \(X\) with \(A(x) = 0\). Then \(A\) is \(b\)-closed fuzzy set in \(X\). Since \(X\) is \(b\)-regular fts, there exists open fuzzy sets \(G, H\) such that \(G(x) = 1\), \(A \leq H\) and \(G \leq 1 - H\). Hence \(X\) is \(g^*\)-regular fts.

The converse of the above theorem need not be true as seen from the following example.

3.4.33 **Example:** In the example 3.4.31, the fts \((X, T)\) is \(g^*\)-regular fts but not \(b\)-regular fts as there does not exist open fuzzy sets say \(G, H\) with \(G \leq 1 - H\) which contain \(c \in X\) and \(a\)-closed fuzzy set \(C\).
3.4.34 **Theorem:** If a fts X is g^*-regular and a fb-T space, then X is b-regular fuzzy topological space.

Proof: Let X be g^*-regular fts. Let $x \in X$ and A be b-closed fuzzy set in X with $A(x) = 0$. Since X is fuzzy b-T space, b-closed fuzzy set A is g^*-closed in X. So we have $x \in X$ and A be g^*-closed fuzzy set in X with $A(x) = 0$. Then, since X is g^*-regular, there exists open fuzzy sets G, H in X such that $G(x) = 1$, $A \leq H$ and $G \leq 1 - H$. Hence X is b-regular fts.

3.4.35 **Theorem:** If a fts X is regular and a fuzzy-$T^*_{1/2}$, then X is g^*-regular fts.

Proof: Let X be regular fts. Let $x \in X$ and A be g^*-closed fuzzy set in X with $A(x) = 0$. Then A is closed fuzzy set in X since X is fuzzy-$T^*_{1/2}$. Again since X is regular fts, there exists open fuzzy sets G, H such that $G(x) = 1$, $A \leq H$. Hence X is g^*-regular fts.

3.4.36 **Theorem:** The following three properties are equivalent.

1) X is g^*-regular fts.

2) For each $x \in X$ and a g^*-open fuzzy set U with $U(x) = 1$, there exists an open fuzzy set V with $V(x) = 1$, such that $V \leq \overline{V} \leq U$.

3) For each $x \in X$ and a g^*-closed fuzzy set A with $A(x) = 0$. There is an open fuzzy set V with $V(x) = 1$, such that $A \leq 1 - V$ or $\overline{V} \leq 1 - A$.

Proof: (1) \Rightarrow (2): Let X be g^*-regular fts. Let $x \in X$ and a g^*-open fuzzy set U with $U(x) = 1$. Then we have $x \in X$ and g^*-closed fuzzy set $1 - U$ with $(1 - U)(x) = 0$. By hypothesis, there exists open fuzzy sets W and V such that $V(x) = 1$ and $1 - U \leq W$ and $V \leq 1 - W$. Now $V \leq 1 - W$ implies that $V \leq \overline{1 - W} = 1 - W \leq U$. Therefore $V \leq \overline{V} \leq U$.
Let $x \in X$ and a g^*-closed fuzzy set A with $A(x) = 0$. We have $x \in X$ and a g^*-open fuzzy set $1 - A$ with $(1 - A)(x) = 1$. By hypothesis, there exists an open fuzzy set V with $V(x) = 1$, such that $V \leq \overline{V} \leq 1 - A$.

(2) \Rightarrow (3): Let $x \in X$ and a g^*-closed fuzzy set A with $A(x) = 0$. By hypothesis, there exists an open fuzzy set V with $V(x) = 1$ and $V \leq 1 - A$. Let $B = 1 - \overline{V}$. Then B is open fuzzy set and $\overline{V} \leq 1 - A$ implies $A \leq 1 - \overline{V} = B$. Also $V \leq \overline{V} = 1 - B$. Hence $A \leq B$ and $V \leq 1 - B$. Hence X is g^*-regular fts.

(3) \Rightarrow (1): Let $x \in X$ and A be g^*-closed fuzzy set with $A(x) = 0$. By hypothesis, there exists an open fuzzy set V with $V(x) = 1$ and $V \leq 1 - A$. Let $B = 1 - \overline{V}$. Then B is open fuzzy set and $\overline{V} \leq 1 - A$ implies $A \leq 1 - \overline{V} = B$. Also $V \leq \overline{V} = 1 - B$. Hence $A \leq B$ and $V \leq 1 - B$. Hence X is g^*-regular fts.

3.4.37 Theorem:
A fuzzy subspace of a g^*-regular fts is g^*-regular.

Proof: Let Y be a fuzzy subspace of g^*-regular fts X. Let $x \in Y$ and A be g^*-closed fuzzy set in Y with $A(x) = 0$. Then there is a closed fuzzy set and so g^*-closed fuzzy set B of X such that $A = B \wedge Y$ and $B(x) = 0$. Since X is g^*-regular fts, there exist open fuzzy sets G, H such that $G(x) = 1$, $B \leq H$ and $G \leq 1 - H$. Then $G \wedge Y$ and $H \wedge Y$ are open fuzzy sets such that $(G \wedge Y)(x) = 1$, $A \leq H \wedge Y$ and $G \wedge Y \leq 1 - (H \wedge Y)$. Hence Y is g^*-regular.

3.4.38 Theorem:
If $f : X \rightarrow Y$ is an open, fg^*-irresolute bijection and X is g^*-regular fts then Y is g^*-regular fts.

Proof: Let $y \in Y$ and A be g^*-closed fuzzy set of Y with $A(y) = 0$. Since f is fg^*-irresolute, $f^{-1}(A)$ is g^*-closed fuzzy set in X. Put $f(x) = y$, then $(1 - f^{-1}(A))(x) = 1$. Since X is g^*-regular fts, there exists open fuzzy sets G, H such that $G(x) = 1$, $f^{-1}(A) \leq H$ and $G \leq 1 - H$. Since f is open and bijective, we have $(f(G))(y) = 1$, $A \leq f(H)$ and $f(G) \leq 1 - f(H)$. This shows that Y is g^*-regular fts.
3.4.39 **Definition:** A fts X is said to be g^*-normal if for every g^*-closed fuzzy set K and g^*-open fuzzy set B such that $K \leq B$, there exist a fuzzy set A such that $K \leq A^e \leq \bar{A} \leq B$.

3.4.40 **Theorem:** For a fts X the following statements are equivalent.

1) X is a g^*-normal fts.

2) For any two g^*-closed fuzzy sets A and B in X such that $A \leq 1 - B$, there exist open fuzzy sets C, D such that $A \leq C$, $B \leq D$ and $C \leq 1 - D$.

3) For any two g^*-closed fuzzy sets A and B in X such that $A \leq 1 - B$, there is an open fuzzy set C such that $A \leq C$ and $\bar{C} \leq 1 - B$.

4) For any two g^*-closed fuzzy sets A and B in X such that $A \leq 1 - B$, there are open fuzzy sets C, D such that $A \leq C$, $B \leq D$ and $\bar{C} \leq 1 - D$.

Proof:

1) \Rightarrow 2): Let A and B be any two g^*-closed fuzzy sets with $A \leq 1 - B$. Then since $1 - B$ is a g^*-open fuzzy set, from (1), there exists a fuzzy set E such that $A \leq E^e \leq \bar{E} \leq 1 - B$. Put $C = E^e$ and $D = 1 - \bar{E}$. Then C and D are open fuzzy sets. And then $A \leq C$ and $B \leq 1 - \bar{E} = D$. Also $C = E^e \leq E \leq \bar{E} \leq 1 - D$. Thus $A \leq C$, $B \leq D$ and $C \leq 1 - D$.

2) \Rightarrow 3): Let A and B be g^*-closed fuzzy sets with $A \leq 1 - B$. Then from (2), there exist open fuzzy sets C, D such that $A \leq C$, $B \leq D$ and $C \leq 1 - D$. Now $\bar{C} \leq 1 - D = 1 - D \leq 1 - B$. Therefore $\bar{C} \leq 1 - B$.

3) \Rightarrow 4): Let A and B be g^*-closed fuzzy sets such that $A \leq 1 - B$. Then from (3), there is an open fuzzy set C such that $A \leq C$ and
\(\overline{C} \leq 1 - B \). Now \(\overline{C} \) is closed fuzzy set and so \(g^* \)-closed fuzzy set. \(\overline{C} \) and \(B \) are \(g^* \)-closed fuzzy sets with \(\overline{C} \leq 1 - B \). So \(B \leq 1 - \overline{C} \). Again from (3), there exists a open fuzzy set \(D \) such that \(B \leq D \) and \(\overline{D} \leq 1 - \overline{C} \). So \(\overline{C} \leq 1 - \overline{D} \). Hence \(A \leq C, B \leq D \) and \(\overline{C} \leq 1 - \overline{D} \).

(4) \(\Rightarrow \) (1): Let \(K \) be a \(g^* \)-closed fuzzy set and \(B \) be \(g^* \)-open fuzzy set such that \(K \leq B \), then \(B = 1 - C \), where \(C \) is \(g^* \)-closed fuzzy set. Now \(K \leq 1 - C \), where \(K, C \) are \(g^* \)-closed fuzzy sets. From (4), there exist open fuzzy sets \(D, E \) such that \(K \leq D, C \leq E \) and \(\overline{D} \leq 1 - \overline{E} \). Take \(A = D \), then \(A \) is open fuzzy set and \(K \leq A^* \leq \overline{A} \leq 1 - \overline{E} \leq 1 - C = B \). Therefore \(K \leq A^* \leq \overline{A} \leq B \). Hence \(X \) is \(g^* \)-normal fts. This completes the proof.

3.4.41 Example: In the example 3.4.31, \(X \) is \(g^* \)-normal fts, as the fuzzy sets \(A \) and \(B \) are \(g^* \)-closed fuzzy sets with \(A \leq B \). The fuzzy sets \(A \) and \(B \) are open fuzzy sets such that \(\land A \leq 1 - B \). Hence \((X, T) \) is \(g^* \)-normal fts.

3.4.42 Theorem: Every \(g^* \)-normal fts is normal fts.
Proof: The proof follows from the two definitions.

3.4.43 Theorem: If \(X \) is normal fts and a fuzzy - \(T^*_{1/2} \), then \(X \) is \(g^* \)-normal fts.
Proof: Let \(K \) be a \(g^* \)-closed fuzzy set and \(B \) is \(g^* \)-open fuzzy set in \(X \) such that \(K \leq B \), since \(X \) is fuzzy - \(T^*_{1/2} \), \(K \) is closed fuzzy set and \(B \) is open fuzzy set such that \(K \leq B \). Again since \(X \) is a normal fts, there exist a fuzzy set \(A \) such that \(K \leq A^* \leq \overline{A} \leq B \). And hence \(X \) is \(g^* \)-normal fts.

3.4.44 Theorem: Every b-normal fts is \(g^* \)-normal fts.
Proof: Let X be a b-normal fts. Let K be a g^*-closed and B be g^*-open fuzzy sets in X such that $K \leq B$, then K is b-closed and B is b-open fuzzy sets and $K \leq B$. Since X is b-normal fts, there exist a fuzzy set A such that $K \leq A^* \leq \overline{A} \leq B$. Hence X is g^*-normal fts.

The converse of the above theorem need not be true as seen from the following example.

3.4.45 Example: In the example 3.4.31, X is g^*-normal fts. But X is not b-normal fts, as the fuzzy sets C, D are b-closed fuzzy sets with $C \leq 1 - D$, but there do not exist open fuzzy sets A and B such that $C \leq A, D \leq B$ and $A \leq 1 - B$.

3.4.46 Theorem: If X is g^*-normal fts and a fuzzy b-space then X is b-normal fts.

Proof: Let K be a b-closed fuzzy set and B be b-open fuzzy set in X such that $K \leq B$, since X is fuzzy b-space, K is closed and B is open fuzzy sets in X and so K is g^*-closed, B is g^*-open fuzzy sets with $K \leq B$. Again since X is g^*-normal fts, there exist a fuzzy set A such that $K \leq A^* \leq \overline{A} \leq B$. Hence X is b-normal fts.

3.4.47 Theorem: If $f : X \to Y$ is an open, fg^*-irresolute bijection and X is g^*-normal fts then Y is g^*-normal fts.

Proof: Let A and B be g^*-closed fuzzy sets of Y with $A \leq 1 - B$. Since f is fg^*-irresolute function, $f^{-1}(A)$ and $f^{-1}(B)$ are g^*-closed fuzzy sets of X such that $f^{-1}(A) \leq 1 - f^{-1}(B)$. Since X is g^*-normal fts, there exists open fuzzy sets C and D such that $f^{-1}(A) \leq C, f^{-1}(B) \leq D$.

and $C \leq 1 - D$. Since f is open and bijective, we have $A \leq f(C)$, $B \leq f(D)$ and $f(C) \leq 1 - f(D)$. Here $f(C)$ and $f(D)$ are open fuzzy sets in Y. This proves that Y is g^*-normalfts.

The concepts of fuzzy g^*-T_0, fuzzy g^*-T_1 and fuzzy g^*-T_2 fts can be introduced and studied using the concept of g^*-open and g^*-closed fuzzy sets.