GENERAL REMARKS

1. Nuclear Magnetic Resonance spectra were recorded on BRUCKER AVANCE-400 MHz spectrometer. Proton Chemical shifts are reported in (δ) ppm relative to internal Tetramethylsilane (TMS, δ 0.00 ppm). Selected data are reported as follows: Chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broadened, dd = doublet by doublet, dt = doublet by triplet and td = triplet by doublet), coupling constants (J in Hz) and assignments. All the carbon NMR spectra were recorded on (100 MHz) spectrometers with complete proton decoupling. All NMR spectras were acquired at ambient temperature.

2. The elemental analyses were analyzed with varioMICRO instruments.

3. Mass spectra were recorded on MicroVG-7070H mass spectrometer for ESI-MS

4. Infrared spectra were recorded on Fourier Transfer Infrared spectrometer.

5. Optical rotations were recorded on Rudolph Autopol IV automatic Polarimeter.

6. Crystal data were solved through WingX software.

7. Melting points were recorded on Guna (India) melting point apparatus and are uncorrected.

8. All evaporations were carried out under reduced pressure on Buchi rotary evaporator.

9. All solvents and reagents were purified and dried by standard techniques.

10. All the reactions monitored by analytical thin layer chromatography (TLC) using E-Merck silicagel plates (60G-254). Visualization was accomplished by irradiation with UV lamp (256mm) and stained with iodine on silicagel.

11. All non-aqueous reactions were carried out under nitrogen (N₂) atmosphere using dry, freshly distilled solvents unless otherwise noted. Yields refer to chromatographically and spectroscopically homogeneous materials isolated unless otherwise stated.

12. 60-120 Mesh silica gel is generally denoted as ‘Silica gel’ (Merck Laboratory Chemicals for chromatography).