CHAPTER – I
General Introduction

1. Introduction
 1.1. Lipopolysaccharide is a major cause of ALI/ARDS
 1.1.1. Lipid A
 1.1.2. Core oligosaccharide
 1.1.3. O-antigen
 1.2. Acute Respiratory Distress Syndrome
 1.2.1. ARDS clinical course
 1.2.2. Pathophysiology of ARDS
 1.2.3. Phases in ARDS
 1.2.3.1. The exudative phase
 1.2.3.2. The proliferatory phase
 1.2.3.3. The fibrotic phase
 1.2.4. Polymorphonuclear leukocytes (PMNs) role in ARDS
 1.2.5. Differences between normal and injured alveolus during ALI/ARDS.
 1.2.6. Role of oxidant and antioxidant in the pathogenesis of lung inflammation
 1.2.7. Oxidant interaction with molecules
 1.2.8. Possible precipitating causes of ARDS
 1.3. Pulmonary System
 1.3.1. Role of pulmonary cells in respiration
 1.3.2. Pulmonary surfactant
 1.3.3. Biophysical properties of surfactants
 1.3.4. Immunological properties
 1.3.5. Pulmonary Surfactant Lipids
2.2.8.1. Superoxide dismutase (SOD: EC. 1.15.1.1) assay 39
2.2.8.2. Catalase (CAT: 1.11.1.6) assay 39
2.2.8.3. Glutathione peroxidase (GPx: EC. 1.11.1.9) assay 40

2.2.9. Histopathological examination 41

2.2.10. Lipid extraction and separation by thin layer chromatography 41
2.2.10.1. Phospholipid determination by phosphorus assay 42
2.2.10.2. Perfusion of lung 42
2.2.10.3. Isolation and purification of alveolar type II cells 43
2.2.10.4. Isolation of alveolar type-II cells 43
2.2.10.5. Purification of alveolar type-II cells 44
2.2.10.6. Trypan Blue Staining 44
2.2.10.7. Papanicolaou staining 45

2.2.11. In vitro $[^{32}P]$orthophosphate labelling in lung tissue 45
2.2.11.1. In vitro $[^{32}P]$ labelling of lung tissue pre-incubated with LPS 46
2.2.11.2. In vitro $[^{32}P]$orthophosphate post-labelling of lung tissue 46

2.2.12. Metabolic labeling of alveolar type II cells 46
2.2.13. Lipid extraction and separation by thin layer chromatography 47
2.2.14. Fatty acid analysis 47
2.2.15. Extraction of total RNA and cDNA synthesis 48
2.2.15.1. Reverse Transcriptase-Polymerase Chain Reaction 49

2.2.16. Statistical analysis 49

2.3. Results 50
2.3.1. In vitro metabolic labelling of lung phospholipids by $[^{32}P]$orthophosphate. 50
2.3.2. Labelling of phospholipids along with LPS 50
2.3.3. Pre-incubation of tissue with compound before phospholipid labelling 52
2.3.4. Post-incubation of LPS with labelled lung phospholipids 54
2.3.5. Isolation and purity characterization of AEC2 cells. 54
2.3.6. Metabolic labelling of AEC2 phospholipid in the presence of LPS 55
2.3.7. Effect of LPS on phospholipid molecular species 57
2.3.8. LPS administration leads to lung neutrophil sequestration 59
2.3.9. Effect of LPS on BALF neutrophil content and protein concentration of BALF

2.3.10. LPS exposure increases the serum marker enzymes and depicted multiple organ failure

2.3.11. Levels of lipid peroxidation and non-enzymatic antioxidants

2.3.12. Effect of enzymatic antioxidants SOD, CAT and GPx

2.3.13. Lung histology of LPS induced ARDS rats

2.3.14. LPS administration impairs lung surfactant phospholipids

2.3.15. Influence of LPS on lung phospholipid molecular species alteration

2.3.16. Expression of PL remodeling enzymes

2.4. Discussion

2.4.1. In vitro metabolic labelling of whole lung and AEC2 phospholipids with LPS shows alteration in major surfactant PL

2.4.2. Effect of LPS on Lung fatty acid composition

2.4.3. LPS administration leads to lung neutrophil sequestration

2.4.4. Protein concentration of BALF confirms vascular leakage

2.4.5. Elevated serum marker enzymes depicted multiple organ failure

2.4.6. LPS induced oxidative stress

2.4.7. LPS exposure leads to deficiency in lung antioxidants

2.4.8. LPS impairs surfactant phospholipid metabolism

2.4.9. Impact of LPS on fatty acid composition of lung phospholipids

2.4.10. Impact of LPS on the gene expression of PL remodeling enzymes

CHAPTER – III

Role of phospholipids, fatty acid changes and immune impairment in spleen and thymus during LPS endotoxemia

Synopsis

3.1. Introduction

3.2. Materials and Methods

3.2.1. Material

3.2.2. Animals

3.2.3. In vitro metabolic labelling of spleen and thymus tissues with LPS

3.2.4. In vivo model of ALI/ARDS
3.3. Results

3.3.1. *In vitro* metabolic labelling of spleen phospholipids by $[^{32}\text{P}]$orthophosphate.

3.3.2. Labelling of spleen phospholipids along with LPS

3.3.3. Pre-incubation of tissue with compound before phospholipid labelling

3.3.4. Post-incubation of LPS with labelled spleen phospholipids

3.3.5. Effect of LPS on spleen phospholipid molecular species

3.3.6. LPS administration impairs spleen phospholipids

3.3.7. Influence of LPS on spleen phospholipid molecular species alteration

3.3.8. Expression of PL remodeling enzymes

3.3.9. *In vitro* metabolic labelling of thymus phospholipids along with LPS

3.3.10. Pre-incubation of tissue with compound before phospholipid labelling

3.3.11. Post-incubation of LPS with labelled thymus phospholipids

3.3.12. Impact of LPS on thymus phospholipid molecular species

3.3.13. LPS exposure leads to impairment in thymus phospholipids

3.3.14. Impact of LPS on thymus phospholipid fatty acid alteration

3.3.15. Expression of PL remodeling enzymes

3.4. Discussion

3.4.1. LPS alters the Phospholipids of spleen and thymus tissues

3.4.2. Fatty acid composition of LPS treated spleen and thymus PLs

3.4.3. Involvement of LPS on spleen and thymus phospholipids

3.4.4. Fatty acid distribution of spleen and thymus phospholipids during LPS induction

3.4.5. Impact of LPS on PL remodeling enzymes gene expression.

SUMMARY

BIBLIOGRAPHY

PUBLICATIONS