<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Average distance between molecules.</td>
</tr>
<tr>
<td>a'</td>
<td>Distance between two molecules i and l at which the energy of interaction is minimum.</td>
</tr>
<tr>
<td>a_v</td>
<td>Area of contact of two impacting surfaces.</td>
</tr>
<tr>
<td>a_e</td>
<td>Energy density constant in radiation.</td>
</tr>
<tr>
<td></td>
<td>Second virial coefficient of the mixture.</td>
</tr>
<tr>
<td>b</td>
<td>Coefficient of p in Jones equation of State.</td>
</tr>
<tr>
<td>b'</td>
<td>A function measuring departure of explosion products from perfect gas behaviour.</td>
</tr>
<tr>
<td>b_v</td>
<td>Van der Waals covolume term.</td>
</tr>
<tr>
<td>c</td>
<td>Third virial coefficient for the mixture.</td>
</tr>
<tr>
<td>c_e</td>
<td>Coefficient of cubical expansion.</td>
</tr>
<tr>
<td>d</td>
<td>Fourth virial coefficient for the mixture.</td>
</tr>
<tr>
<td>e</td>
<td>Base of Naperian logarithms.</td>
</tr>
<tr>
<td>g</td>
<td>Functions in Kirkwood's state equation.</td>
</tr>
<tr>
<td>g</td>
<td>$G = \int e^{-\frac{W}{kT}} dv$</td>
</tr>
<tr>
<td>g</td>
<td>$G = \ln \left[\int e^{-\frac{W}{kT}} dv \right]$</td>
</tr>
<tr>
<td>g</td>
<td>$G = \ln \left[\int e^{-\frac{W}{kT}} dv \right]$</td>
</tr>
<tr>
<td>h</td>
<td>Planck's constant.</td>
</tr>
<tr>
<td>h</td>
<td>Interval in the numerical solution of the differential equation.</td>
</tr>
<tr>
<td>k_e</td>
<td>Volume Elasticity.</td>
</tr>
<tr>
<td>k</td>
<td>Boltzmann's constant.</td>
</tr>
<tr>
<td>k_c</td>
<td>Stress concentration factor.</td>
</tr>
</tbody>
</table>
Constants defined in the text

- \(k_i \)
- \(\ell(q) \)
- \(L(q) \)
- \(m(q) \)
- \(\omega(q) \)

Functions in Lennard Jones State Equation.

- \(m_1 \)
- \(m_2 \)
- \(m_i \)
- \(m_{ij} \)
- \(m_{m} \)
- \(m_{n} \)

- Molecular weight of the explosive
- Molecular weight of the component i in the explosion products.

- Mass of the anvil and the ball in impact experiments.

- \(n \)
 - Total number of gm. moles of the explosion products, in the gaseous state.

- \(n_1, n_2 \)
 - Number of gm. moles of the i th gaseous species, and that of the solid phase in the explosion products.

- \(p \)
 - Pressure in the detonation wave front.
- \(p_0 \)
 - Original pressure of the explosive.
- \(p_e \)
 - Partial pressure of the species i among the explosive products.
- \(p_* \)
 - Fugacity of the component i in the mixture of products.
- \(p^* \)
 - Standard pressure.
- \(p_r \)
 - Radiation pressure.

- \(r \)
 - Distance between molecules.
- \(r_0 \)
 - Radius of the ball in impact experiments.
- \(s \)
 - Specific heat of the crystal.

- \(t \)
 - Time of impact of colliding bodies.

- \(v \)
 - Volume per molecule

- \(v = \frac{n_3}{n} \)

- \(v \)
 - Parameter for the mixture as defined by Kirkwood.

- \(w \)
 - Interaction energy per molecule.

- \(w_c \)
 - Velocity of the compression waves.

- \(w_o \)
 - Velocity of approach of the ball wrt the anvil in impact experiments.

- \(w \)
 - Number of nitrogen atoms in the explosive.
$x = \frac{X}{nRTv^2}$

- Number of carbon atoms in the explosive
- Mole fraction of the species i in the mixture.

$x_i = \left(\frac{b}{r} \right)$

- Number of hydrogen atoms in the explosive
- Number of oxygen atoms in the explosive.

- Helmholtz Free Energy
- Angstrom Unit.

$$A_i = \frac{1}{2} \left[\frac{\pi \omega_k (r_k + s_k) m_a m_b}{16 (m_a + m_b)} \right]^{1/2}$$

- Second virial coefficient of the component i in the mixture.
- Lennard-Jones function for the second virial coefficient.

- Velocity of sound.
- Specific heat at constant volume.
- Average specific heat at constant volume between the temperatures 300°K and $T^\circ K$.

- Specific heat at infinite volume.
- Third virial coefficient of the component i in the mixture.

- Detonation velocity.
- Fourth virial coefficient of the component i in the mixture.

- Total energy of the products of explosion.
- Energy of interaction of the products.

- Internal energy of the component i in the mixture.
- Internal Energy of the explosive.

- Energy of elastic deformation.
- Internal Energy of the solid phase in the explosion products.
- Energy due to radiation.
\(\alpha, \beta, \gamma, \delta, \ \) Number of gm. moles of \(\text{CO}_2, \ \text{CO}, \ \text{H}_2\text{O}, \ \text{H}_2, \ \text{CH}_4, \ \text{N}_2 \) and \(\text{C} \) in the explosion products.

\(\alpha_0, \beta_0, \gamma_0 \) Bipolar coordinates as defined by Jeffery.

\(\alpha, \epsilon, \nu \) Constants in RH equation for Proton gas.

\(\alpha' \) \(\nu(1- \frac{1}{\zeta}) \)

\(\alpha_0 \) Constant taking account of the cross section of the reaction, in deuteron formation.

\(\gamma_0 \) Ratio of specific heats.

\(\epsilon_0 \) Parameter defined by Kirkwood for the mixture.

\(\epsilon \) Energy between two molecules at a distance \(r \).

\(\epsilon_0 \) Minimum of energy between two molecules \(i \) and \(l \).

\(\eta \) \(\frac{H_r}{m \beta^4} \)

\(\Theta \) A function defined in the text.

\(\theta \) Function tabulated in tables by Ficket and Wood.

\(\lambda^0 \) Absolute activity of the component \(i \).

\(\lambda^i \) Chemical potential of the species \(i \).

\(\lambda^a \) Shear modulus.

\(\xi \) \(-\frac{V}{V_0} \)

\(\Pi \) A notation for the products.

\(\rho_0 \) Original density of the explosive.

\(\rho \) Density of the explosion products in the detonation, wave front.

\(\rho_c \) Crystal density.

\(\rho'_c \) Energy density.

\(\rho'_b \) Density of the material of impacting bodies.

\(\sigma \) \((1 + x_r + x_b^2 + x_b^3 + \cdots) \)

\(\sigma_0 \) A constant defining the communal entropy.

\(\sigma_* \) Poisson's ratio.

\(\zeta \) Function tabulated in Tables of Ficket and Wood.

\(\phi \) \(\frac{n \pi}{T_0} \)

\(\phi_0 \) \(\frac{(1-\pi)^r}{\pi \omega^r c(-3 \omega)} \)

\(\psi \) A function defined in the text.
F Force of impact.
G Gibbs free energy.
H Heat of reaction.
I^0H^0 Constants derived in the graph of \(f \cdot C_v \cdot dT = H \) against temperature.
K, K' Ideal and corrected equilibrium constant.
°K Degree absolute of temperature.
N A. vogodros number.
P, ... Pressure at the point of impact, and that exerted by the anvil on the explosive.
R Gas constant.
S Entropy of the products of explosion.
S_e Entropy of the solid phase in explosion products.
S_i^T Temperature dependent part of the entropy of the component \(i \) in the explosion products.
S_i^0 Entropy of the component \(i \) at some standard state.
T_o Original temperature of the explosive.
T Temperature of the explosion products, in the detonation wave at the Chapman Jouguet point.
T_s Stress.
U Function used in the calculation.
V_o Original volume of the explosive.
V Volume of the products of explosion, in the detonation wave at Chapman Jouguet point.
V_g, V_s Volumes of the gaseous and solid products of explosion.
W Particle velocity.
W(r) Interaction energy per mole.
X A constant in the interaction energy.
Z \((1 + \frac{d \log D}{d \log \xi})\)