Contents

Symbols and abbreviations i
List of tables ii
List of figures v

1. INTRODUCTION 1

2. NEED FOR THE STUDY 13

3. OBJECTIVES 14

4. REVIEW OF LITERATURE 15

4.1 Introduction to oral cavity

4.1.1 Oral cavity 15

4.1.2 Overview of oral cavity 15

4.1.3 Anatomy of oral mucosa 16

4.1.4 Biochemistry of oral mucosa 17

4.1.5 Routes of drug transport across the oral mucosa 18

4.1.6 Barriers to drug transport across buccal mucosa 19

4.2 Buccal as a site of drug delivery 21

4.2.1 Advantages of mucoadhesive buccal drug delivery System 22

4.2.2 Limitation of buccal drug administration 23

4.3. Formulations 24

4.3.1 Solid buccal adhesive dosage forms 24

4.3.2 Semi-solid buccal adhesive dosage forms 25

4.3.3 Liquid dosage forms 26
4.4 Introduction to vagina

4.4.1 Anatomy and histology of vagina
4.4.2 Physiological changes and the influence of drug absorption
4.4.3 Vaginal secretions
4.4.4 Vaginal pH
4.4.5 Microflora
4.4.6 Cyclic changes

4.5 Vagina as site for drug therapy

4.5.1 Advantages of vaginal drug delivery
4.5.2 Drawbacks of vaginal drug delivery

4.6 Formulations

4.6.1 Vaginal semisolids
4.6.2 Vaginal suppositories
4.6.3 Vaginal liquids
4.6.4 Vaginal aerosols
4.6.5 Vaginal rings
4.6.6 Vaginal inserts
4.6.7 Insitu gelling
4.6.8 Medicated vaginal tampons
4.6.9 Vaginal films

4.7 Introduction to rectum

4.7.1 Physiology and biopharmaceutical characteristics of rectum
4.7.2 Permeability
4.7.3 Effect of pH

4.8 Rectal drug delivery

4.8.1 Advantages

4.8.2 Disadvantages

4.9 Formulations

4.9.1 Rectal semisolids

4.9.2 Rectal suppositories

4.9.3 Rectal liquids

4.10 Bioadhesion

4.10.1 Mechanism of bioadhesion

4.10.2 Theories of bioadhesion/mucoadhesion

4.10.3 Factors affecting bioadhesion/mucoadhesion

4.10.4 Possible routes of drug transport across the oral mucosa

4.10.5 Permeation enhancers

4.10.6 Mechanism of buccal absorption enhancer

4.11 Review of Research Papers

4.12 Drugs Profile

4.13 Polymers Profile

4.14 Excipients Profile

5 MATERIALS AND METHODS

5.1 Materials

5.2 Instruments and Equipments

5.3 Preparation of buffer solutions
5.4 Analytical methods

5.4.1 Estimation of Miconazole nitrate (MN) 75
5.4.2 Estimation of 5-fluorouracil (5-FU) 79

5.5 Preformulation studies 85

5.6 Formulation design for MN matrix tablet

Chitosan-carbopol 71G IPEC

5.6.1 Preparation of chitosan-carbopol 71G IPEC 88
5.6.2 Turbidity measurement of chitosan-carbopol 71G IPEC ratios 88
5.6.3 MN matrix tablet of using chitosan-carbopol 71G IPEC 88

Chitosan-carboxymethyltamarind (CMT) IPEC

5.6.4 Preparation of chitosan-CMT IPEC 90
5.6.5 Viscosity measurement of chitosan-CMT IPEC ratios 90
5.6.6 MN matrix tablet of using chitosan-CMT IPEC 90

5.7 Formulation design for 5-FU matrix tablets

Chitosan-polycarbophil IPEC

5.7.1 Preparation of chitosan-polycarbophil IPEC 92
5.7.2 Transmittance measurement of chitosan-polycarbophil IPEC ratios 92
5.7.3 5-FU matrix tablet using chitosan-polycarbophil IPEC 92

Chitosan-sodium alginate IPEC

5.7.4 Preparation of chitosan-sodium alginate IPEC 94
5.7.5 Viscosity measurement of chitosan-sodium alginate IPEC ratios 94
5.7.3 5-FU matrix tablet using chitosan-sodium alginate IPEC 94

5.8 Evaluation

5.8.1 Characterization of IPEC 96

5.8.2 Evaluation of tablets

5.6.2.1 Physicochemical properties 96
5.6.2.2 Swelling studies 98
5.6.2.3 *In vitro* dissolution studies 98
5.6.2.4 *In vitro* mucoadhesion studies 99
5.6.2.5 Ex vivo permeation studies 100
5.6.2.6 Mathematical model fitting 100

5.9 *In vivo* Evaluation

5.9.1 X-ray photographic studies 101

5.10 Stability Studies 102

6 RESULTS AND DISCUSSION

6.1 Miconazole nitrate matrix tablet

6.1.1 Preformulation studies 103
6.1.2 Turbidity measurement of Chitosan-carbopol IPEC ratios 107
6.1.3 Characterization of chitosan-carbopol IPEC

6.1.3.1 FT-IR 108
6.1.3.2 DSC 113
6.1.3.3 X-ray diffraction 116
6.1.4 Evaluation of MN tablets 118
6.1.5 Swelling studies 120
6.1.6 *In vitro* dissolution Studies 126
6.1.7 *In vitro* mucoadhesion studies 133
6.1.8 *In vivo* X-ray studies 135
6.1.9 Mathematical model fitting 137
6.1.10 Stability studies 138

6.2 Miconazole nitrate matrix tablet

6.2.1 Preformulation studies 139
6.2.2 Viscosity measurement of chitosan-CMT IPEC 142
6.2.3 Characterization of chitosan-CMT IPEC
 6.2.3.1 FT-IR 143
 6.2.3.2 DSC 147
 6.2.3.3 X-ray diffraction 148
6.2.4 Evaluation of MN tablets 150
6.2.5 Swelling studies 152
6.2.6 *In vitro* dissolution Studies 159
6.2.7 *In vitro* mucoadhesion studies 166
6.2.8 *In vivo* X-ray studies 168
6.2.9 Mathematical model fitting 169
6.2.10 Stability studies 170

6.3 5-fluorouracil matrix tablet

6.3.1 Preformulation studies 171
6.3.2 Transmittance measurement of chitosan-polycarbophil IPEC ratios 175
6.3.3 Characterization of chitosan-polycarbophil IPEC

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.3.1 FT-IR</td>
<td>176</td>
</tr>
<tr>
<td>6.3.3.2 DSC</td>
<td>180</td>
</tr>
<tr>
<td>6.3.3.3 X-ray diffraction</td>
<td>182</td>
</tr>
<tr>
<td>6.3.4 Evaluation of 5-FU tablets</td>
<td>184</td>
</tr>
<tr>
<td>6.3.5 Swelling studies</td>
<td>186</td>
</tr>
<tr>
<td>6.3.6 In vitro dissolution Studies</td>
<td>194</td>
</tr>
<tr>
<td>6.3.7 In vitro mucoadhesion studies</td>
<td>203</td>
</tr>
<tr>
<td>6.3.8 In vivo X-ray studies</td>
<td>205</td>
</tr>
<tr>
<td>6.3.9 Ex vivo permeation studies</td>
<td>206</td>
</tr>
<tr>
<td>6.3.10 Mathematical model fitting</td>
<td>208</td>
</tr>
<tr>
<td>6.3.11 Stability studies</td>
<td>209</td>
</tr>
</tbody>
</table>

6.4 5-fluorouracil matrix tablet

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.1 Preformulation studies</td>
<td>210</td>
</tr>
<tr>
<td>6.4.2 Viscosity measurement of chitosan-sodium alginate IPEC ratios</td>
<td>213</td>
</tr>
<tr>
<td>6.4.3 Characterization of chitosan-sodium alginate IPEC</td>
<td>214</td>
</tr>
<tr>
<td>6.4.3.1 FT-IR</td>
<td>214</td>
</tr>
<tr>
<td>6.4.3.2 DSC</td>
<td>218</td>
</tr>
<tr>
<td>6.4.3.3 X-ray diffraction</td>
<td>222</td>
</tr>
<tr>
<td>6.4.4 Evaluation of 5-FU tablets</td>
<td>224</td>
</tr>
<tr>
<td>6.4.5 Swelling studies</td>
<td>226</td>
</tr>
<tr>
<td>6.4.6 In vitro dissolution Studies</td>
<td>235</td>
</tr>
</tbody>
</table>
6.4.7 In vitro mucoadhesion studies 245
6.4.8 In vivo X-ray studies 247
6.4.9 Ex vivo permeation studies 249
6.4.10 Mathematical model fitting 251
6.4.11 Stability studies 252

7 SUMMARY AND CONCLUSION 253

8 BIBLIOGRAPHY 260

9 ANNEXURE

Animal Ethical clearance Certificate 289
Publications 290
Published articles 291