Table of Contents

List of Figures VII
List of Tables XIV
Acronyms XVI

1. Overview 1-8

2. Wireless Networks - Preliminaries 9-38
 2.1 Wireless Ad-Hoc Networks - Characteristic & Applications 10
 2.2 Network Simulators & Simulations – State of Art 11
 2.2.1 OPNET 12
 2.2.2 GLOMOSIM 13
 2.2.3 OMNET++ 14
 2.2.4 QUALNET 14
 2.2.5 MATLAB 15
 2.2.5.1 TRUETIME Toolbox 16
 2.2.6 NETWORK SIMULATOR- NS2 17
 2.3 Network Simulation Using NS-2 21
 2.3.1 Steps To Use NS-2 And Creating Trace File 21
 2.3.1.1 Creation Of Tcl File 21
 2.3.1.2 Network Animator (NAM) Viewer 22
 2.3.1.3 Trace File Format 22
 2.3.1.4 Extraction Of Necessary Data From Trace File 23
 2.3.2 Simulation Of Wired Networks 25
 2.3.3 Simulation Of Wireless Network Using NS-2 29
 Summary 38

 3.1 Properties of Routing Protocols 40
 3.2 Routing Protocols -Classification 41
3.3 Performance metrics

3.4 State of Art - Proactive Routing Protocols

3.4.1 Fisheye State Routing Protocol (FSR)

3.4.2 Optimized Link State Routing (OLSR)

3.5 Reactive (on demand) Routing Protocols

3.5.1 Ad-Hoc On Demand Distance Vector (AODV) Routing Protocol

3.5.2 Dynamic Source Routing (DSR)

3.6 Hybrid Routing Protocols

3.7 Qualnet simulator

3.8 Performance Evaluation of Routing protocols

3.8.1 Simulation of proactive routing protocols: FSR & OLSR

3.8.2 Simulation of Reactive routing protocols: AODV & DSR

3.8.3 Simulation of Hybrid routing protocols: ZRP

3.8.4 Comparison of proactive, reactive routing protocols

3.8.5 Comparison of Proactive, Reactive & Hybrid Routing Protocols

Summary

4.1 Soft Computing Traits

4.2 Soft Computing: Introduction

4.3 Fuzzy Logic

4.3.1 Keywords, Terminology

4.3.2 Architecture of Fuzzy Inference System

4.4 Artificial Neural Network

4.4.1 The Basic Artificial Model

4.4.2 Implementation of Artificial Neural Network

4.4.3 Single layer and multi-layer networks

4.4.4 Types of Neural Network Learning

4.4.5 Back Propagation Network (BPN)

4.5 Genetic Algorithms

4.5.1 When to use genetic algorithms?
4.5.2 GA Terminology 87
4.5.3 General Rules to Set Parameters of Genetic Algorithm 88

4.6 Adaptive Neuro Fuzzy Inference System (ANFIS) 90

4.7 Software Development Tools 92
 4.7.1 MATLAB 7 92
 4.7.2 SIMULINK 6 95
 4.7.3 FUZZY Logic toolbox 95
 4.7.4 Neural Network Toolbox 96
 4.7.5 GADS Toolbox 96
 4.7.6 ANFIS Editor 97

Summary 98

5.1 Overview of AODV Routing Protocol 99
 5.1.1 Routing table 99
 5.1.2 Control messages 100
 5.1.2.1 Routing request 100
 5.1.2.2 Routing reply 101
 5.1.2.3 Route error 101
 5.1.2.4 HELLO messages 101
 5.1.3 Sequence numbers 102
 5.1.3.1 Counting to infinity 102
 5.1.3.2 Time stamping 102
 5.1.4 Route discovery 102

5.2 AODV Configuration Parameters 103

5.3 MATLAB 104
 5.3.1 SIMULINK 104
 5.3.2 Truetime Toolbox 105
 5.3.3 Software Requirements 106
 5.3.4 Compilation 106

5.4 Simulation of Classical AODV using Truetime 107
5.4.1 Process to run simulation model
5.4.2 Simulation Results for Classical AODV
5.5 Simulation of Fuzzy based AODV
5.5.1 Fuzzy Inference System
5.5.2 Rule Base
5.5.3 Rule Viewer and Surface Viewer
5.6 ANFIS AODV
5.7 Comparative Analysis: Classical & Soft AODV
5.8 User Interface Design
5.8.1 Implementation of GUI
5.8.2 Graphical User Interface for Simulator
5.8.3 Files linked with User Interface

Summary

6. Fuzzy Logic Based Aodv – Hybrid Simulation

6.1 Classical AODV
6.2 Fuzzy Inference System(FIS) :Introduction
6.3 FIS :State of Art
6.4 Fuzzy AODV
6.5 Fuzzy based performance optimization
6.5.1 Proposed Procedure for Hybrid Simulation

Summary

7. ANN Aodv, Ga Based Ann Training

7.1 Artificial Neural Network: An Introduction
7.2 ANN Based AODV
7.2.1 ANN Configuration
7.2.2 Training Algorithm
7.2.3 Implementation of ANN-AODV
7.3 Genetic Algorithm (GA): an Introduction
7.4 GA based ANN
7.4.1 Chromosomes
8. **FPGA Implementation of Soft AODV** 163-184

8.1 **FPGA Implementation of ANN** 167

8.1.1 *Algorithm for FPGA implementation of ANN based Reactive routing protocol* 168

8.1.2 *System Block Diagram* 169

8.1.3 *System Software simulation Results* 170

8.1.4 *Hardware Setup and Implementation* 174

8.2 **Files Used for FPGA Implementation of ANN** 178

8.3 **Neuro-Fuzzy AODV** 180

8.3.1 *ANFIS Based AODV* 180

8.3.2 *ANFIS Configuration* 181

Summary 184

9. **Concluding Remarks & Future Scope** 185-193

10. **Bibliography** 194-214

A.1 *Process of installation of NS2 on Fedora Linux 8* 215

A.2 *ISE Design Flow* 216

A.2.1 *iMPACT Files* 219

A.3 *Code Generation Using Xilinx ISE 13.1* 221

A.3.1 *To Configure or Program a Device* 226

A.3.1.1 *Generating PROM Files* 226
A.3.1.2 Introduction to Boundary-Scan (JTAG) 226

A.4 XCV5LX110T FPGA Board 229

Appendix B: Photogallary 233-237

Appendix C: User Interface 238-240

Appendix D: List of Papers based on Research work 241-245

D1: Publications - Proceedings/Referred 241
(National/International) Journals

D2: Presentations -Regional/National/International 243
Conferences

D3: Awards/Prizes 245