INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ABBREVIATIONS</td>
<td>1</td>
</tr>
<tr>
<td>2. ABSTRACT OF THE THESIS</td>
<td>5</td>
</tr>
<tr>
<td>3. INTRODUCTION AND REVIEW OF LITERATURE</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Cancer</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Breast cancer</td>
<td>8</td>
</tr>
<tr>
<td>3.2.1 Types of breast cancer</td>
<td>10</td>
</tr>
<tr>
<td>3.2.2 Symptoms and signs of breast cancer</td>
<td>10</td>
</tr>
<tr>
<td>3.2.3 Causes of breast cancer</td>
<td>10</td>
</tr>
<tr>
<td>3.2.3.1 Genetic causes</td>
<td>11</td>
</tr>
<tr>
<td>3.2.3.2 Hormonal factors</td>
<td>11</td>
</tr>
<tr>
<td>3.2.3.3 Lifestyle and dietary agents</td>
<td>11</td>
</tr>
<tr>
<td>3.2.3.4 Environmental factors</td>
<td>11</td>
</tr>
<tr>
<td>3.2.4 Stages of breast cancer</td>
<td>11</td>
</tr>
<tr>
<td>3.2.5 Breast cancer treatment</td>
<td>12</td>
</tr>
<tr>
<td>3.3 Semaphorins</td>
<td>12</td>
</tr>
<tr>
<td>3.3.1 Classification of semaphorin family</td>
<td>13</td>
</tr>
<tr>
<td>3.3.2 Structure of semaphorin receptors</td>
<td>14</td>
</tr>
<tr>
<td>3.3.2.1 Plexins</td>
<td>14</td>
</tr>
<tr>
<td>3.3.2.2 Neuropilins</td>
<td>15</td>
</tr>
<tr>
<td>3.3.2.3 Additional semaphorin receptors</td>
<td>16</td>
</tr>
<tr>
<td>3.4 Semaphorin signaling implicated in cancer</td>
<td>16</td>
</tr>
<tr>
<td>3.4.1 Pro-tumoral semaphorins</td>
<td>16</td>
</tr>
<tr>
<td>3.4.2 Tumor suppressive semaphorins</td>
<td>17</td>
</tr>
<tr>
<td>3.4.2.1 Semaphorin 3A</td>
<td>17</td>
</tr>
</tbody>
</table>
3.4.2.2 Role of semaphorin 3A in cancer

3.5 Semaphorin signaling contributes to various hallmarks of cancers

3.5.1 Sustained cell proliferation

3.5.2 Resistance to apoptosis

3.5.3 Regulation of oxidative stress

3.5.4 Modulation of tumor angiogenesis

3.5.5 Invasion and metastasis

3.5.6 Tumor promoting inflammation

3.5.7 Evasion of immune surveillance

3.6 PTEN

3.6.1 Structure of PTEN

3.6.2 Role of PTEN in cancer

3.6.3 Functions of PTEN

3.7 FOXO factors

3.7.1 Structure and classification

3.7.2 Functional regulation of FOXO proteins through various mechanisms

3.7.2.1 Post-translational modification of FOXO factors

3.7.2.1.1 Phosphorylation

3.7.2.1.2 Acetylation

3.7.2.1.3 Ubiquitination

3.7.2.1.4 Site-specific cleavage

3.7.3 Implication of FOXO proteins in cancer

3.7.4 FOXO 3a and its role in cancer

3.8 MelCAM

3.8.1 Structure and localization of MelCAM
3.8.2 Role of MelCAM in tumor biology
3.8.3 MelCAM-mediated signaling pathways

3.9 Apoptosis
3.9.1 Causes of apoptosis
3.9.2 Morphological changes associated with apoptosis
3.9.3 Mechanisms involved in apoptosis
3.9.3.1 The extrinsic pathway
3.9.3.2 The intrinsic pathway
3.9.3.3 Perforin/granzyme pathway
3.9.3.4 Execution pathway

3.10 Sulforaphane

3.11 Multifunctional role of sulforaphane
3.11.1 Sulforaphane and cancer

3.12 Role of sulforaphane in apoptosis

3.13 PI 3-kinase and Akt
3.13.1 Role of Akt in apoptosis

3.14 p38 MAPKs
3.14.1 Role of p38 MAPKs in apoptosis

3.15 ERK MAPKs
3.15.1 ERK and apoptosis

4. AIMS AND OBJECTIVES OF THE STUDY

5. MATERIALS AND METHODS
5.1 Sources of antibodies, chemicals and c-DNA constructs
5.2 Maintenance of cell lines
5.3 Preparation of LB agar containing Ampicillin and Kanamycin
5.4 Preparation of competent cells
5.5 Transformation
5.6 Plasmid preparation
5.7 Agarose gel electrophoresis
5.8 Preparation of glycerol stocks
5.9 Mammalian cell transfection
5.10 Whole cell lysate preparation
5.11 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis
5.12 Preparation of nuclear and cytoplasmic extracts
5.13 Electrophoretic mobility shift assay (EMSA)
 5.13.1 Labeling of oligonucleotide
 5.13.2 Protein-DNA binding reaction
5.14 Reverse transcription-PCR (RT-PCR)
5.15 Chromatin immunoprecipitation (ChIP) assay
5.16 Immunofluorescence assay
5.17 Cell proliferation (MTT) assay
5.18 Matrigel colony formation assay
5.19 DNA fragmentation assay
5.20 Cell cycle analysis
5.21 Transwell migration assay
5.22 Wound migration assay
5.23 Tumor-endothelial cell comigration/coinvasion assay
5.24 In vitro tube formation assay
5.25 Chorioallantoic membrane (CAM) assay
5.26 In vivo tumorigenicity experiments
5.27 Analysis of human breast cancer clinical specimens
6. SEMA 3A SUPPRESSES BREAST TUMOR GROWTH AND ANGIOGENESIS THROUGH REGULATION OF FOXO 3A DEPENDENT MELCAM EXPRESSION

6.1 Introduction

6.2 Results

6.2.1 Sema 3A regulates NRP-1-mediated PTEN phosphorylation and induces its nuclear translocation

6.2.2 Sema 3A inhibits FOXO 3a phosphorylation and induces its nuclear translocation

6.2.3 NRP-1 mediates Sema 3A-induced FOXO 3a nuclear shuttling

6.2.4 Sema 3A induces PTEN-mediated FOXO 3a-DNA binding and nuclear translocation

6.2.5 Sema 3A induces NRP-1 dependent PTEN and FOXO 3a-mediated MelCAM expression

6.2.6 NRP-1 is involved in Sema 3A-mediated breast cancer cell migration

6.2.6.1 Sema 3A dependent attenuation of breast cancer cell motility is mediated by NRP-1

6.2.6.2 Sema 3A suppresses breast cancer cell migration via NRP-1

6.2.7 PTEN plays a crucial role in modulating Sema 3A-mediated breast cancer cell migration

6.2.8 FOXO 3a plays a vital role in attenuating Sema 3A-mediated...
breast cancer cell migration

6.2.9 Sema 3A overexpression attenuates breast tumor growth and angiogenesis

6.2.10 Blocking endogenous Sema 3A modulates the expression of various Sema 3A-regulated molecules in MCF-7 cells

6.2.11 Sema 3A silencing augments breast tumor growth in NOD-SCID mice model

6.2.11.1 Blocking endogenous Sema 3A induces breast tumor growth in NOD-SCID mice

6.2.11.2 Attenuation of endogenous Sema 3A augments breast tumor growth in NOD-SCID mice

6.2.12 Sema 3A abrogates VEGF-induced angiogenesis

6.2.13 Sema 3A suppresses VEGF-induced capillarogenesis

6.2.14 Sema 3A attenuates tumor-endothelial cell interaction through NRP-1 dependent paracrine manner

6.2.15 Expression of Sema 3A and p-PTEN in clinical specimens and their correlation with breast cancer progression

6.3 Discussion

7. SEMA 3A IN COMBINATION WITH SULFORAPHANE ATTENUATES BREAST TUMOR GROWTH THROUGH REGULATION OF AKT/MAPK SIGNALING CASCADE

7.1 Introduction

7.2 Results

7.2.1 Sema 3A in combination with SFN significantly triggers apoptosis in MDA-MB-231 cells

7.2.1.1 Sema 3A in combination with SFN inhibits MDA-
MB-231 cell viability and inhibits colony formation on matrigel

7.2.1.2 Sema 3A in combination with SFN induces cell death in MDA-MB-231 cells

7.2.2 Sema 3A in combination with SFN suppresses MDA-MB-231 cell migration

7.2.3 Sema 3A in combination with SFN regulates the expression of various pro-and anti-apoptotic molecules

7.2.4 Akt pathway is crucial for induction of apoptosis by Sema 3A and SFN in MDA-MB-231 cells

7.2.5 ERK pathway plays a vital role in apoptosis-induced by Sema 3A and SFN in MDA-MB-231 cells

7.2.6 Sema 3A in combination with SFN suppresses breast tumor growth in NOD-SCID mice model

7.2.6.1 Sema 3A in combination with SFN attenuates breast tumor growth in orthotrophic mice model

7.2.6.2 Sema 3A in combination with SFN regulates Akt/MAPK pathways in orthotrophic mice model

7.3 Discussion

8. SUMMARY AND CONCLUSION

9. BIBLIOGRAPHY

10. APPENDIX

10.1 List of publications

10.2 List of conferences attended