Nomenclature

\(\mathbf{a} \) approach vector of hand
\(a_x, a_y, a_z \) direction cosines of \(\mathbf{a} \)
\(\begin{bmatrix} \mathbf{i}^{-1}A_1 \end{bmatrix} \) D-H transformation matrix
\(c_i \) \(\cos(q_i) \)
\(c_{ij} \) \(\cos(q_i + q_j) \)
\(c_{ijk} \) \(\cos(q_i + q_j + q_k) \)
\(d_{ij} \) Euclidean distance between the \(i^{th} \) and \(j^{th} \) individual
\(D_{ij} \) Distance between \(i^{th} \) sphere on robot and \(j^{th} \) sphere on obstacle
\(N \) total number of individuals in the population
\(n \) number of variables in optimization problem
\(n^\prime \) niche size parameter
\(\mathbf{n} \) normal vector of hand
\(n_x, n_y, n_z \) direction cosines of \(\mathbf{n} \)
\(n_k \) actual number of solutions in the vicinity of the \(k^{th} \) optimal solution in the population
\(\bar{n}_k \) expected value of number of solutions near the \(k^{th} \) optimal solution in the population
\(\tilde{n}_k \) standard deviation of the number of solutions near the \(k^{th} \) optimal solution in the population
\(n_{ci} \) niche count of \(i^{th} \) individual
\(\mathbf{o} \) orientation vector of hand
\(O_x, O_y, O_z \) direction cosines of \(\mathbf{o} \)
\([O_i] \) link geometric data in the link coordinate frame of the robot
\([O_0] \) link geometric data in the base coordinate frame of the robot
\(P_m \) probability of mutation
\(\{^0P_h\} \) position vector of the robot hand
\(\{^0P_w\} \) position vector of the robot wrist
\(\{^0P_{w,des}\} \) desired position vector of the robot wrist
\(q^l_k, q^u_k \) lower and upper bounds of \(k^{th} \) design variable
\(q_{k,p}^{(1)}, q_{k,p}^{(2)} \) parents of \(k^{th} \) design variable
\(q_{k,c}^{(1)}, q_{k,c}^{(2)} \) children of \(k^{th} \) design variable
\(\{q_{cur}\} \) vector of wrist positioning joint variables at current configuration of robot
vector of wrist positioning joint variables at desired goal position of robot

\(\Delta q \) total joint displacement

\(r \) number of niches in the search space

\([^iR_j] \) rotation matrix describing \(i^{th} \) coordinate frame with respect to \(j^{th} \) coordinate frame

\(s/N \) ratio of number of individuals sought as partner for selection of an individual \('i' \) to total number of individuals in population

\(S_i \) \(\sin(q_i) \)

\(S_{ij} \) \(\sin(q_i + q_j) \)

\(S_{ijk} \) \(\sin(q_i + q_j + q_k) \)

\(S_h(d_{ij}) \) sharing function values for \(i^{th} \) individual

\(t \) current generation number

\(t_{\text{max}} \) maximum number of generations allowed

\([^0T_i] \) homogeneous transformation matrix describing \(i^{th} \) coordinate frame with respect to the base coordinate frame

\([^0T_h] \) homogeneous transformation matrix describing hand coordinate frame with respect to the base coordinate frame

\([^3T_j] \) homogeneous transformation matrix describing \(i^{th} \) coordinate frame with respect to \(j^{th} \) coordinate frame

\(u \) random number between 0 and 1

\(w_1, w_2 \) weights in objective function

\(\beta \) spread factor parameter of SBX operator

\(\eta \) distribution index for SBX operator

\(\eta_m \) distribution index for mutation

\(\Delta_{\text{max}} \) maximum perturbation allowed in the parent solution during mutation

\(\theta_i, d_i, a_i, \alpha_i \) D-H parameters of robot link

\(\psi \) deviation measure of population

\(\lambda_1, \lambda_2, \lambda_3 \) indexes used to index spheres during spherization of links

\(\lambda_{1,\text{max}} \) maximum value of \(\lambda_1 \)

\(\lambda_{2,\text{max}} \) maximum value of \(\lambda_2 \)

\(\lambda_{3,\text{max}} \) maximum value of \(\lambda_3 \)

\(\varepsilon_i, \chi \) modelling tolerance of spherization

\(\| \| \) Euclidean distance