List of Tables

3.1 DH parameters of SCARA robot 63
3.2 Variation of accuracy of solutions and minimum and mean deviation measure of best distribution, for the SCARA robot inverse kinematics, with change of population size (position of wrist (600mm, 400mm, 130mm), cross-over probability = 0.9, SBX distribution index = 50, s/N = 0.4) 66
3.3 Variation of accuracy of solutions and minimum and mean deviation measure of best distribution, for the SCARA robot inverse kinematics, with change of s/N ratio of niching strategy 2 (position of wrist (600mm, 400mm, 130mm), cross-over probability = 0.9, SBX distribution index = 50, population size = 80) 69
3.4 Variation of accuracy of solutions and minimum and mean deviation measure of best distribution, for the SCARA robot inverse kinematics, with change of n* of niching strategy 1 (position of wrist (600mm, 400mm, 130mm), cross-over probability = 0.9, SBX distribution index = 50, population size = 80) 72
3.5 Results of simulation experiments performed on SCARA robot 75
3.6 DH parameters of PUMA robot 81
3.7 Variation of accuracy of solutions and minimum and mean deviation measure of best distribution, for the PUMA robot inverse kinematics, with change of population size (position of wrist (540mm, 210mm, 260mm), cross-over probability = 0.9, SBX distribution index = 150, s/N = 0.4) 83
3.8 Variation of accuracy of solutions and minimum and mean deviation measure of best distribution, for the PUMA robot inverse kinematics, with change of s/N ratio of niching strategy 2 (position of wrist (540mm, 210mm, 260mm), cross-over probability = 0.9, SBX distribution index = 150, population size = 150) 87
3.9 Variation of accuracy of solutions and minimum and mean deviation measure of best distribution, for the PUMA robot inverse kinematics, with change of n* of niching strategy 1 (position of wrist (540mm, 210mm, 260mm), cross-over probability = 0.9, SBX distribution index = 150, population size = 150) 90
3.10 Results of simulation experiments performed on PUMA robot 93
3.11 Results of simulation experiments performed on PUMA robot (a) Solution of wrist positioning joint xvi
variables for hand matrix given in eqn. (3.28)
(b) Solution of hand orienting joint variables for configuration no. 2 and 4
4.1 DH parameters of Mitsubishi Movemaster RV-M1 robot
121
4.2 Comparison of performance of evolutionary approach (based on real-coded GA) with and without elitism for simulation experiment 1 of Mitsubishi Movemaster RV-M1 robot
133
4.3 Values of joint variables at different points of trajectory for simulation experiment 1 of Mitsubishi Movemaster RV-M1 robot
149
4.4 Comparison of performance of evolutionary approach (based on real-coded GA) with and without elitism for simulation experiment 2 of Mitsubishi Movemaster RV-M1 robot
160
4.5 Values of joint variables at different points of trajectory for simulation experiment 2 of Mitsubishi Movemaster RV-M1 robot
173

xvii