List of Figures

2.1 Binary and real-coded representation of an individual 21
2.2 Mechanics of real-coded GA 24
2.3 Roulette wheel selection 26
2.4 Stochastic universal sampling selection 27
3.1 Link coordinate system and link parameters 36
3.2 (a) Cylinder primitive generated through cyl(0,0,10,-50,-40, π, 2π, link_no, jt_variable, jt_type,'z') 50
(b) Cylinder primitive generated through cyl(0,0,10,-20, -10, 0, 2π, link_no, jt_variable, jt_type,'y') 51
(c) Cylinder primitive generated through cyl(0,0,10,-30, -20, π, 2π, link_no, jt_variable, jt_type,'x') 52
3.3 Polyhedron primitive generated through polyhedron(-40,0,350,60, 100, -53, 53, link_no, jt_variable, jt_type) 53
3.5 Link generated through polyhedron(0, 0, 432, 164, 299, 52, 149, link_no, jt_variable, jt_type), cyl(0,0,82,149, π/2,π/2,link_no, jt_variable, jt_type,'z'), cyl(-432,0,149,5,52, link_no, jt_variable, jt_type, 'z') 56
3.6 Methodology of robot model generation 57
3.7 SCARA robot 58
3.8 PUMA robot 59
3.9 SCARA robot model generated in MATLAB environment 61
3.10 PUMA robot model generated in MATLAB environment 62
3.11 Variation of deviation measure, defined in eqn.(3.17), with generations obtained during SCARA robot inverse kinematics solution using population sizes of 40, 60 and 80 67
3.12 Variation of deviation measure, defined in eqn.(3.17), with generations obtained during SCARA robot inverse kinematics solution using s/N ratios of 0.2,0.4,0.6 and 0.8 70
3.13 Variation of deviation measure, defined in eqn.(3.17), with generations obtained during SCARA robot inverse kinematics solution using n* parameter values of 40, 45 and 50 73
3.14 Distribution of individuals in population at
(a) initial generation (b) generation no. 5
(c) generation no. 10 (d) generation no. 50 of
simulation experiment no. 1 of SCARA robot

3.15 Distribution of individuals in population at
(a) initial generation (b) generation no. 5
(c) generation no. 10 and (d) generation no. 70
of simulation experiment no. 5 of SCARA robot

3.16 Right and left configurations of SCARA robot
with wrist at position (600mm,400mm,130mm)

3.17 Variation of deviation measure, defined in
eqn.(3.17), with generations obtained during
PUMA robot inverse kinematics solution using
population sizes of 120, 150 and 180

3.18 Variation of deviation measure, defined in
eqn.(3.17), with generations obtained during
PUMA robot inverse kinematics solution using s/N
ratios of 0.2, 0.4, 0.6 and 0.8

3.19 Variation of deviation measure, defined in
eqn.(3.17), with generations obtained during
PUMA robot inverse kinematics solution using n*
parameter values of 35, 40, 45 and 50

3.20 Distribution of individuals in population at
(a) initial generation (b) generation no. 20
(c) generation no. 100 and (d) generation no.
260 of simulation experiment no. 1 of PUMA
robot (o-optimal points, x-population members)

3.21 Multiple configurations of PUMA robot at wrist
position (600mm,149.09mm,200mm)

3.22 Distribution of individuals in population at
(a) initial generation (b) generation no. 20
(c) generation no. 50 and (d) generation no. 240
during solution of wrist positioning joint
variables for achieving hand matrix given in
eqn. (3.28) (o-optimal points, x-population
members)

3.23 Multiple configurations of PUMA robot
corresponding to hand matrix given in eqn.(3.28)

4.1 Cuboid discretized into elements with spheres
(4 1 2), (6 3 1) and (2 1 4) circumscribing
corresponding elements

4.2 Spherization of cuboid shown in fig. 4.1

4.3 Collision detection scheme

4.4 Mitsubishi Movemaster RV-M1 robot

4.5 Variation of modelling tolerance with number of
spheres used to spherize links 2, 3, 4 and 5 of
robot and robot hand

4.6 View of Mitsubishi Movemaster robot (a) without
spherization (b) showing spherization of links
2,3,4,5 and hand
4.7 Mitsubishi Movemaster RV-M1 robot with obstacle in vicinity of desired trajectory

4.8 Spherized robot and obstacle, with robot hand at
(a) knot point 1 of trajectory
(b) knot point 2 of trajectory
(c) knot point 3 of trajectory
(d) knot point 4 of trajectory
(e) knot point 5 of trajectory
(f) knot point 6 of trajectory
(g) knot point 7 of trajectory

4.9 Variation of best fitness and average fitness with generations during elitist real-coded GA run at knot point 2 (simulation experiment 1)

4.10 Variation of best fitness and average fitness with generations during elitist real-coded GA run at knot point 3 (simulation experiment 1)

4.11 Variation of best fitness and average fitness with generations during elitist real-coded GA run at knot point 4 (simulation experiment 1)

4.12 Variation of best fitness and average fitness with generations during elitist real-coded GA run at knot point 5 (simulation experiment 1)

4.13 Variation of best fitness and average fitness with generations during elitist real-coded GA run at knot point 6 (simulation experiment 1)

4.14 Variation of minimum positioning error with generations during elitist real-coded GA run at knot point 2 (simulation experiment 1)

4.15 Variation of minimum positioning error with generations during elitist real-coded GA run at knot point 3 (simulation experiment 1)

4.16 Variation of minimum positioning error with generations during elitist real-coded GA run at knot point 4 (simulation experiment 1)

4.17 Variation of minimum positioning error with generations during elitist real-coded GA run at knot point 5 (simulation experiment 1)

4.18 Variation of minimum positioning error with generations during elitist real-coded GA run at knot point 6 (simulation experiment 1)

4.19 Variation of minimum total joint displacement with generations during elitist real-coded GA run at knot point 2 (simulation experiment 1)

4.20 Variation of minimum total joint displacement with generations during elitist real-coded GA run at knot point 3 (simulation experiment 1)

4.21 Variation of minimum total joint displacement with generations during elitist real-coded GA run at knot point 4 (simulation experiment 1)
4.22 Variation of minimum total joint displacement with generations during elitist real-coded GA run at knot point 5 (simulation experiment 1)

4.23 Variation of minimum total joint displacement with generations during elitist real-coded GA run at knot point 6 (simulation experiment 1)

4.24 Robot configuration at knot point 2 (simulation experiment 1) obtained using evolutionary approach based on real-coded genetic algorithm

4.25 Robot configuration at knot point 3 (simulation experiment 1) obtained using evolutionary approach based on real-coded genetic algorithm

4.26 Robot configuration at knot point 4 (simulation experiment 1) obtained using evolutionary approach based on real-coded genetic algorithm

4.27 Robot configuration at knot point 5 (simulation experiment 1) obtained using evolutionary approach based on real-coded genetic algorithm

4.28 Robot configuration at knot point 6 (simulation experiment 1) obtained using evolutionary approach based on real-coded genetic algorithm

4.29 Mitsubishi Movemaster RV-M1 robot working through opening in door (Robot trajectory is indicated by a solid line)

4.30 Robot working through opening in door at
(a) knot point 14 of trajectory
(b) knot point 15 of trajectory
(c) knot point 16 of trajectory
(d) final point of trajectory

4.31 Variation of best fitness and average fitness with generations during elitist real-coded GA run at knot point 14 (simulation experiment 2)

4.32 Variation of best fitness and average fitness with generations during elitist real-coded GA run at knot point 15 (simulation experiment 2)

4.33 Variation of best fitness and average fitness with generations during elitist real-coded GA run at knot point 16 (simulation experiment 2)

4.34 Variation of best fitness and average fitness with generations during elitist real-coded GA run at final point of trajectory (simulation experiment 2)

4.35 Variation of minimum positioning error with generations during elitist real-coded GA run at knot point 14 (simulation experiment 2)

4.36 Variation of minimum positioning error with generations during elitist real-coded GA run at knot point 15 (simulation experiment 2)

4.37 Variation of minimum positioning error with generations during elitist real-coded GA run at knot point 16 (simulation experiment 2)
4.38 Variation of minimum positioning error with generations during elitist real-coded GA run at final point of trajectory (simulation experiment 2) 168
4.39 Variation of minimum total joint displacement with generations during elitist real-coded GA run at knot point 14 (simulation experiment 2) 169
4.40 Variation of minimum total joint displacement with generations during elitist real-coded GA run at knot point 15 (simulation experiment 2) 170
4.41 Variation of minimum total joint displacement with generations during elitist real-coded GA run at knot point 16 (simulation experiment 2) 171
4.42 Variation of minimum total joint displacement with generations during elitist real-coded GA run at final point of trajectory (simulation experiment 2) 172
4.43 Robot configuration at knot point 14 (simulation experiment 2) obtained using evolutionary approach based on real-coded genetic algorithm 175
4.44 Robot configuration at knot point 15 (simulation experiment 2) obtained using evolutionary approach based on real-coded genetic algorithm 176
4.45 Robot configuration at knot point 16 (simulation experiment 2) obtained using evolutionary approach based on real-coded genetic algorithm 177
4.46 Robot configuration at final point of trajectory (simulation experiment 2) obtained using evolutionary approach based on real-coded genetic algorithm 178