Section A – TDR

Chapter I. Introduction & objective of present thesis 01-19

1.1 Introduction

1.1.1 Dielectric fundamentals

1.1.2 Importance of dielectric studies

1.1.3 Dielectric techniques

1.1.3a Time domain technique

1.1.3b Frequency domain technique

1.1.4 Physical permittivity of formamide, n-methyl formamide, nn-dimethyl formamide, ethylene glycol, propylene glycol and butylene glycol.

1.1.5 Molecular structure of formamide, n-methyl formamide, nn-dimethyl formamide, ethylene glycol, propylene glycol and butylene glycol.

1.2 Objective of thesis

References

Chapter II. Dielectric relaxation theory 20-49

2.1 Introduction of dielectric relaxation theory

2.2 Theories of dielectric relaxation

2.3 Theories of static permittivity

2.3.1 Clausius - Mossoti equation

2.3.2 Debye equation
2.3.3 Onsagar theory
2.3.4 Kirkwood theory
2.3.5 Frohlich’s theory
2.4 Theories of dynamic permittivity
2.4.1 The Debye model
2.4.2 The Cole-Cole model
2.4.3 The Davidson-Cole model
2.4.4 The Harviliak - Negami model
2.5 Excess dielectric properties
2.6 Kirkwood correlation factor
2.7 Bruggeman formula
2.8 Thermodynamic properties

References

Chapter III. Time domain reflectometry technique 50-96
3.1 Introduction of Time Domain Reflectometry Technique
3.2 Survey of TDR work
3.3 Basic Principles of TDR
3.3.1 Propagation of signal along Transmission line
3.3.2 Step reflection from purely resistive loads
3.3.3 Step reflection from complex loads
3.4 Experimental set-up of TDR
3.4.1 Block diagram of differential TDR
3.4.1a HP54754A TDR plug in module
3.4.1b Pulse generator
3.4.1c Sampling head
Chapter IV. Dielectric parameter study of formamide with propylene and butylene glycol mixture using TDR technique

4.1 Introduction
4.2 Experimental
4.3 Dielectric parameter of FMD+PLG mixture
4.3.1 Observation and conclusion
4.4. Dielectric parameter of FMD+BLG mixture
4.4.1 Observation and conclusion
4.5 Conclusion
References
Chapter V. Dielectric parameter study of n-methyl formamide with propylene and butylene glycol mixture using TDR technique

5.1 Introduction

5.2 Experimental

5.3 Dielectric parameter of NMF+PLG mixture

5.3.1 Observations and conclusion

5.4 Dielectric parameter of NMF+BLG mixture

5.4.1 Observation and conclusion

5.5 Conclusion

References

Chapter VI. Dielectric parameter study of nn-dimethyl formamide with propylene and butylene glycol mixture using TDR technique

6.1 Introduction

6.2 Experimental

6.3 Dielectric parameter of DMF+PLG mixture

6.3.1 Observation and conclusion

6.4 Dielectric parameter of DMF+BLG mixture

6.4.1 Observation and conclusion

6.5 Conclusion

References
Section B – FDR

Chapter VII. Theory of frequency domain technique

7.1 The slotted line

7.1.1 Errors in slotted line technique
7.1.2 Probe tuning error
7.1.3 Harmonics and spurious signals
7.1.4 Frequency modulation
7.1.5 Detector characteristics

7.2 Elementary concepts of wave guide
7.3 Advantage of hallow wave guide
7.4 Theory of rectangular wave guide

7.5 Review of experimental methods

7.5.1 Resonance method
7.5.2 Non-resonance method

7.6 Basic equation for dilute solution
7.7 Basic equation for concentrated solution
7.8 Experimental set-up of X-band

7.9 Method of experimental analysis
7.10 X-band microwave bench set-up of components
7.11 Microwave power/frequency meter
7.12 Experimental method to determine dielectric properties of liquids
7.13 Standing wave pattern of liquids for 9,10,11 and 12GHz frequency

References
Chapter VIII. Dielectric parameter of dihydroxyl group and amide mixture using FDR technique

8.1 Introduction
8.2 Experimental
8.3 Dielectric parameter of FMD+ELG mixture
 8.3.1 Observation
8.4 Dielectric parameter of FMD+PLG mixture
 8.4.1 Observation
8.5 Dielectric parameter of DMF+ELG mixture
 8.5.1 Observation
8.6 Dielectric parameter of DMF+PLG mixture
 8.6.1 Observation
8.7 Conclusion

References

Chapter IX. Conclusion and salient feature of the present work

Appendix

Publication