CHAPTER - 5

STREAMLINING PAYROLL PROCESSING SYSTEM

STUDY, ANALYSIS AND APPLICATION OF LEAN METHODOLOGY TO A CLASS OF IT ENABLED SERVICES
CHAPTER 5

STREAMLINING PAYROLL PROCESSING SYSTEM

5.1 INTRODUCTION

The study and analysis of the two of the four core competent activities of the IT enabled service sector lead to the study of the third important activity of the sector namely "Streamlining the payroll processing system". This comprehensive study of payroll system is analyzed to overcome the denting process through the application of Lean Methodologies which proved to be very effective in establishing a fool proof system to deliver the requisite for the management to maintain a précised payroll processing documentation.

In a company, payroll is the sum of all financial records of salaries for an employee, wages, bonuses and deductions. In accounting, payroll refers to the amount paid to
employees for services they provided during a certain period of time. Payroll plays a major role in a company for several reasons. From an accounting point of view, payroll is crucial because payroll and payroll taxes considerably affect the net income of most companies and they are subject to laws and regulations (e.g. in the payroll is subject to federal and state regulations). From an ethics in business viewpoint payroll is a critical department as employees are responsive to payroll errors and irregularities, good employee morale requires payroll to be paid timely and accurately. The primary mission of the payroll department is to ensure that all employees are paid accurately and timely with the correct withholdings and deductions, and to ensure the withholdings and deductions are remitted in a timely manner. This includes salary payments, tax withholdings, and deductions from a paycheck.

5.2. PROCESS OVERVIEW & CURRENT STATUS

The payroll team will process the salary for 6400+ employees in a Multinational IT organization. In this process the inputs are coming from 8 different teams. Payroll team will do the reconciliation of all the received inputs and compile those in a single file and then this file will be uploaded to ADP (crediting the salary will happen from this system) and then in to PPS (Multinational MNC’s Payroll processing system) for generating pay slips.

This is a fortnight payroll. Salary will be processed on 15th and 30th of every month, the processing team require 4 working days to process and upload the details in to ADP. Since the inputs not received on time, the changes will not be incorporated in the salary which leads to huge escalations, Employee

STUDY, ANALYSIS AND APPLICATION OF LEAN METHODOLOGY TO A CLASS OF IT ENABLED SERVICES
dissatisfaction and affecting accuracy of payroll processing. On an average 440
mails are received per day by payroll team for different type of issues / queries from
employee.

5.3. THE STUDY

The aim of applying the 8D methodology together with novel statistical and Lean
techniques to maximize the employee satisfaction by improving the accuracy of
payroll processing system and simultaneously streamlining the existing procedural
activities to precision which helps in enhancing the overall performance of Payroll.

5.3.1. Problem Statement

To understand the current issues a statistical study is conducted on payroll
process. As a part of study the author had analyzed 3000 responded mails by US
payroll team in one month for understanding the nature of problems and issues of
onsite employee. The study reveals the following

- The accuracy in payroll processing is 97.5%.
- The average inflow of mails per day is around 440.

5.3.2 The Business Case

Before the project is analyzed it is customary to present a business case with the
existing system together with the proposed statistical analysis through lean
methodologies to overcome the flaws so as to optimize the study under
investigation to the Top Management
What is the need of doing this project?

1. Need to address current issues of onsite employee in USA on high priority.

2. To streamline payroll processing system

Why doing it now?

1. There is a huge inflow of mails received every day by payroll processing team

2. To Improve the accuracy of payroll processing system

What will happen if this project is not initiated?

1. Huge escalation will go to Top Management.

2. Miss outs in payroll will happen.

3. Employee dissatisfaction due to issues in payroll processing part and not receiving accurate salary.

What is the projected business impact?

1. Streamlining payroll processing system and improving

 The accuracy of payroll.

2. Improvement in Employee satisfaction.

5.3.3 Project Customer Value Proposition

The Business case proposals submitted by the researcher will be thoroughly examined by the management and passes its judgment to carry out the Project to
present the valid suggestions and recommendations to improve upon the existing system so as to streamline the payroll system. The sanctioned proposal is termed as the project customer value proposition which give the details of deliverables for both the customer and Management.

Project's Customer Value Proposition

1. Accurate salary credit
2. Confirmation on his enrollment to payroll for new joinee.
3. Providing clarity on updating the bank details, personal details etc in a single place.

Project Deliverable Details

- Accuracy in payroll processing.
- Collecting the inputs for payroll processing from System
- Reduction in inflow of mails.

Project Execution Challenge

- Change in the current payroll processing system with the support from different stakeholders.
- Enhancements in employee database system (SAP) with Coordination with Information technology team. Developing new enrollment system with integration to SAP
5.4. METHODOLOGY

For the proposed study the author chosen a versatile and effective "8 Disciplines of problem solving Methodology" at the initial stage of analysis. The next phase of analysis is encountered with the application of Lean tenants in order to optimize the payroll system. The steps involved in optimization of 8 disciplines problem solving methodology is detailed here under.

5.4.1. DEFINE THE PROBLEM

The activities listed under will be performed during the initial analysis.

- A complete detailed study on the current process,
- Define the scope of the project,
- Study the current process capability using tools like capability six pack, DPMO calculation
- Target setting validation using statistical tools like One Sample test and one proportion test.

The major observation based on AS IS process map study is all inputs required for processing payroll are received in the form of excel from various teams at different time intervals, which is really a problem which needs attention.

The details of the study were summarized in the following.

Before the analysis the process overview is presented detailing the methodology to be followed during the course of study.
CHAPTER 5

Process overview

The payroll team will process the salary for 7000+ employees in US. Inputs are coming from 8 teams. Payroll team will do the reconciliation of all the received inputs and compile those in a single file and then this file will be uploaded to ADP and then in to PPS for generating pay slips.

This is a fortnight payroll. Salary will be processed on 15th and 30th of every month. The processing team require 4 working days to process and upload the details in to ADP. Since the inputs not received on time, the changes will not be incorporated in the salary which leads to huge escalations. Employee dissatisfaction and affecting accuracy of payroll processing. On an average 440 mails are received per day by US payroll team for different type of issues / queries from employee.

Problem Statement:

- A statistical study was conducted on US payroll process. As a part of study we had analyzed 3000 responded mails by US payroll team in one month for understanding the nature of problems and issues of onsite employee in USA. The study reveals the following
 - The accuracy in payroll processing is 97.5%.
 - The average inflow of mails per day was around 440.

As presented in section 5.2.1 to find the current status of the first defined objective through process capability, which is a measure for process accuracy, the DPMO calculator is derived which is found to be 3.5 sigma and the results are presented here under.

Customer Benefits

1. Streamlining US payroll processing system and improving accuracy of payroll.
2. Improvement in Employee satisfaction.

Company Benefits

- Improvement in employee satisfaction.
- Miss outs in payroll will happen in the payroll.

Project Goal:

- Improve the payroll accuracy from 97.5% to 99.9%
- Reduction of mails by 50%.

Project Scope

Longitudinal:
Processing payroll based on inputs received from stakeholders for US employee only.

Latitudinal:
Onsite payroll processing for non-US region

Out of Scope:
Offshore Payroll
Six Sigma Calculator

The calculation of a Sigma level is based on the number of defects per million opportunities (DPMO);

In order to calculate the DPMO, three distinct pieces of information are required:
a) the number of units produced
b) the number of defect opportunities per unit
c) the number of defects

The actual formula is:

$$DPMO = \frac{\text{(Number of Defects X 1,000,000)}}{\left(\frac{\text{Number of Defect Opportunities/Unit}}{\text{Number of Units}}\right)}$$

Example:

A manufacturer of computer hard drives wants to measure their Six Sigma level.
Over a given period of time, the manufacturer creates 83,934 hard drives.
The manufacturer performs 8 individual checks to test quality of the drives.
During testing 3,432 are rejected.

<table>
<thead>
<tr>
<th>Defects</th>
<th>161</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunities</td>
<td>6435</td>
</tr>
<tr>
<td>Defect Opportunities per unit</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DPMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>25019.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sigma Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
</tr>
</tbody>
</table>

Six Sigma Table:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>696,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>308,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>66,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6,210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further the second objective is analyzed to negotiate the present status of inflow of mails through process capability six pack analysis and the current status is presented here under.
As per the last step analysis of “Defining the problem” statistical techniques are applied to validate the process improvement to pass on a judgment about reaching the targets

Process Improvement Target Validation

Test of \(\mu = 220 \) vs not \(\neq 220 \)

The assumed standard deviation = 69

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>StDev</th>
<th>SE Mean</th>
<th>95% CI</th>
<th>Z</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mails</td>
<td>29</td>
<td>429.1</td>
<td>80.2</td>
<td>12.8</td>
<td>(404.0, 454.3)</td>
<td>16.32</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Inference: Reduction in inflow of mails per day by 50% target is statistically significant

Test of \(p = 0.01 \) vs \(p \neq 0.01 \)

<table>
<thead>
<tr>
<th>Sample</th>
<th>X</th>
<th>N</th>
<th>Sample p</th>
<th>95% CI</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>161</td>
<td>6435</td>
<td>0.025019</td>
<td>(0.021342, 0.029135)</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Inference: Improvement in processing accuracy from 97.5% to 99.9% target is statistically significant
5.4.2. BUILD A TEAM ROLES AND RESPONSIBILITIES

The second step of the study is to constitute the team with their entrusted roles and responsibilities to carry out the project within the stipulated time. To design the modus operandi of the team is done through the RACI method or Linear Responsibility Chart (LRC), which describes the participation by various roles in completing tasks or deliverables for a project. It is especially useful in clarifying roles and responsibilities in cross-functional projects. The following tables explain the details about the team and RACI chart explains the roles and responsibilities.

<table>
<thead>
<tr>
<th>Name</th>
<th>Functional role</th>
<th>Project Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murali BHASHYAM</td>
<td>Sr. Manager</td>
<td>Brainstorming, Action Plan Implementation</td>
</tr>
<tr>
<td></td>
<td>Sr. executive</td>
<td>Data collection, Processing payroll</td>
</tr>
<tr>
<td>Pramod Kulkami</td>
<td>SME</td>
<td>Validating the changes</td>
</tr>
<tr>
<td>Shivalinge Gowda</td>
<td>Manager</td>
<td>Brainstorming, Action Plan Implementation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analyze the issue, defining action plans,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Implementation, Validation of improvements</td>
</tr>
<tr>
<td>RVVS. Satish</td>
<td>BB</td>
<td>Data support on mail mail</td>
</tr>
<tr>
<td>Gobind Saha</td>
<td>Executive</td>
<td>Data support and validating changes</td>
</tr>
<tr>
<td>Satish Nayak</td>
<td>Executive</td>
<td>Data support and validating changes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>Accountable</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Consulted</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Informed</td>
</tr>
</tbody>
</table>
5.4.3. CONTAINMENT ACTION

In this step to negotiate the reasons for large inflow of mails that are being received on each day is analyzed with the help of statistical technique namely the "Faulty Tree Analysis". To carry out analysis initially the brainstorming is conducted among the relevant personnel to illicit various ideas, reasons and based on the generated information the fault tree analysis is designed and presented in the following.
The major focus was given to reduce the inflow of mails and answering employee mails on time is considered as top priority. The above analysis infer the fact that the processing agent is getting on an average 4 mails per each query from various teams like Human resource (HR), Talent Engagement and Development (TED), Employee supervisor and Employee as it was not answered on time, Due to this the bandwidth of the processing agent of the payroll is not good enough to answer to the mails on time. The root cause for this is there are no separate teams aligned to answer the mails and do the processing. The study on inflow of mails prompted for the realignment of separate teams for answering mails in two shifts and also to process payroll with immediate effect which proved to be an effective remedy, A dash board is placed to monitor the status on daily basis. As a result the inflow of mails was reduced to good extent and all mails getting answered on time.
5.4.4. DETERMINE THE ROOT CAUSES

A series of activity validation is performed in chronological order so as to identify, analyze the root causes of the existing process for its betterment. Four different statistical techniques are applied to the payroll processes. For identifying the root causes initially the commonly known powerful Pareto analysis is performed to segregate fewer number of causes which are responsible for nearly eighty percent of variation in the payroll process. To validate this application, Chi square test is applied to understand what type of queries are coming and of which are significant. The study confirms the fact that enrollment queries and less salary paid cases are statistically significant.

After the identification of fewer causes, the grouping of these causes is done through TQM application namely "The Affinity Diagram" which is a business tool used to organize ideas and data. This tool is commonly used within the project management to generate large numbers of ideas stemming from brainstorming to
be sorted into groups for review and analysis. The affinity diagram is devised by Jiro Kawakita in the 1960s and is sometimes referred to as the KJ Method.

Further the root causes validation is done through Ishikawa diagrams (also called fishbone diagrams, or herringbone diagrams, cause-and-effect diagrams, or Fishikawa) The Fishbone diagram is causal diagram that show the causes of a certain event -- created by Kaoru Ishikawa (1990). Common uses of the Ishikawa diagram are product design and quality defect prevention, to identify potential factors causing an overall effect. Each cause or reason for imperfection is a source
of variation. Causes are usually grouped into major categories to identify these sources of variation.

The fishbone diagram is designed for the payroll process to identify the major responsible root causes which is presented in the following diagram.

Determine the root causes using Fishbone diagram

5.4.5. VERIFY THE ROOT CAUSES

The fishbone diagram clearly demonstrate the responsible root causes which are identified and picked up for further statistical investigation. In this activity the identified root causes are once again subjected for verification and validation purpose and for which study the effective TQM techniques namely Multi-voting and Brainstorming are used to prioritize the top root causes. Out of 11 causes
identified 8 causes are identified as responsible root causes. The process of identification and validation procedures is detailed here under.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Causes</th>
<th>Multivoting score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inputs are not received on time</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>There is no defined deadline for receiving inputs</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>For New joined salary is getting paid in cheque and the same will be sent to NJ office and employee is not notified about this</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>All inputs were received in the form of mails and excel sheets, due to lack of system in place</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>There is no enrollment module in place to confirm the status of enrollment to payroll</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>There are no standard formats defined to download the reports from SAP</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>There is no bandwidth available to answer the mails on time since the same team is doing the payroll processing</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>There is no validation happening before uploading the file to ADP</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>There is no tracking mechanism in place to monitor the inflow and responded mails</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>No system like service connect in place to track the type of issues received</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>TED is making salary changes post cutoff dates as well</td>
<td>1</td>
</tr>
</tbody>
</table>

5.4.6. CORRECTIVE ACTION

The identified eight root causes after thorough Validation, which are responsible for the large amount of variation during the process and to overcome this counter action plan is designed so as to reduce the variations. For each of the listed root causes action plan is recommended to implement during the payroll process which will definitely reduce the variations, thus help in optimizing the payroll process to achieve the end result in streamlining the entire process. The scientific analysis carried out through out probing and analyzing the payroll process which perhaps in the opinion of the author is reported for the first time which will add to the literature. The comprehensive analysis will lead to optimizing the payroll system which once
again constitute as a third important activity in optimizing the IT enabled sector. The root causes with respective action plans for implementation are detailed below.

Root cause There is no system in place to capture the inputs and all inputs are received for payrolls are manual

Action plan Validate all inputs required for processing payroll and see what reports can come from SAP and do the enhancements in SAP to download the same in an uploadable format to ADP

Root cause There is no defined deadline for receiving inputs from stakeholders

Action Plan Send a standard communication to all teams who sends inputs with defined deadlines to send the inputs

Root cause There is no validation happening before uploading to ADP

Action plan Maker and checker should be in place to validate the final data before uploading to ADP

Root cause For newly joined salary is getting paid in cheque and the same will be sent to New Jersey office and employee is not notified about this

Action plan Send a separate communication to the employee for confirmation of address for sending the cheques 3 days before the processing of payroll

Root cause There is no enrollment module in place to confirm the status of enrollment to payroll
CHAPTER 5

Action plan New enrollment module has to be developed with integration with SAP

Root cause Team bandwidth issues.

Action plan Team should be realigned to answer the mails and processing payroll separately

Root cause There are no standard formats defined to download the reports from SAP

Action plan Define the uploadable formats directly to ADP and share with IS team to download from SAP in the same format

Root cause Dashboard for US Payroll Helpdesk (Email Backlog) Monitoring is not place

Action plan A dashboard should be published on daily basis to monitor the inflow

5.5 LEAN TENANTS

The analysis is further carried out to meet the objectives defined in section 5.2.1 for which lean methods are applied so as to optimize the payroll process which can be précised scientific study. This study will definitely remove the additional fab if any remained in the process so far will be eliminated thoroughly through the following popular lean techniques.

1. **Heijunka (Load balancing)** Heijunka addressed the problem of huge inflow of mails and responding to employee mails on time by realignment of separate teams for answering mails in two shifts and also to process payroll.
2. **Jidoka (Autonomation)** Jidoka addressed the problem of manual collection of inputs from various sources for salary processing by deploying New enrollment module with integration to SAP.

3. **POKE YOKE** Poke –Yoke addressed the problem of new enrollment and miss outs in payroll, Employee details updating in two places through the following actions.

 - The New enrollment module consists of 4 screens, without entering complete details in each screen employee can’t go to next screen at the time of first time enrollment.

 - By blocking employee data base uploaded system (MY DATA) for all employees to update their details and making new enrollment module as a single source to update their details.

4. **Creative thinking** Creative thinking addressed the problem of Salary processed but cheque not received for newly joined employee. By taking a dump of newly joined list and sending communication 3 days prior to payroll processing date to confirm the address to send the cheque.

5. **Standardization** Standardization addressed the problem of Inputs not received on time through the following actions

 - By defining standard cutoff dates for sending / updating inputs in SAP to all stake holders
• Shared the standard templates to IS team for generating change reports from SAP.

• Including new enrollment module in the induction kit given to new joinee.

The application of the lean tenants to optimize the basic objectives of the study (i.e. to improve the accuracy of the process and to reduce the inflow of mails) ad after implementation the study is subjected for statistical validation to distinguish the improvements achieved through the lean. This validation is performed through the statistical test like Two Sample t-test & Test for two proportions. The new defined process capabilities in terms of sigma are studied through Capability six pack analyses and DPMO calculator.

Process Capability-Six Pack - Post Improvement
Process Capability of Accuracy - Post Improvement

Six Sigma Calculator

The calculation of a Sigma level is based on the number of defects per million opportunities (DPMO):

In order to calculate the DPMO, three distinct pieces of information are required:

a) the number of units produced
b) the number of defect opportunities per unit
c) the number of defects

The actual formula is:

\[
\text{DPMO} = \left(\frac{\text{Number of Defects} \times 1,000,000}{\text{(Number of Defect Opportunities/Unit) \times Number of Units}} \right)
\]

Example:

A manufacturer of computer hard drives wants to measure their Six Sigma level. Over a given period of time, the manufacturer creates 83,934 hard drives. The manufacturer performs 8 individual checks to test quality of the drives. During testing, 3,432 are rejected.

The study scientifically proves the very fact that the applications of tools like 8D together with lean tenants have definite impact in optimizing the payroll process. The two defined objectives namely the inflow of mails and accuracy of the process are literally optimized as there is 50% reduction in the inflow of mails thus enhancing the sigma metric to 3.25 level where as accuracy improved from 97.5% to 99.9%, as the accuracy metric has improved from 3.25 sigma to 5 sigma.

5.6. PREVENTION

The last leg of 8D application is the prevention of failures during the payroll process. The statistical concept of Failure mode effect analysis (FMEA) is the appropriate technique to be adopted to validate the failure modes and the respective controls. The FMEA analysis will negotiate the predominant causes for failures and the listed controls if applied on time definitely the failures can be...
reduced so that the precision of the process will be enhanced. The FMEA analysis is presented in the following table.

<table>
<thead>
<tr>
<th>S.NO</th>
<th>Process / Product Characteristics</th>
<th>Potential Failure Mode(s)</th>
<th>Potential Effect(s) of Failure</th>
<th>Potential Cause(s) / Mechanism(s) of Failure</th>
<th>Current Design Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Miss outs in payroll</td>
<td>Miss out in payroll</td>
<td>Due to employee will not get salary on time leads to employee dissatisfaction and also Escalation from supervisors, TED and HR.</td>
<td>Manual inputs on enrollment, negligence of processing team</td>
<td>Who ever got enrolled. The report will be taken from SAP and same will be uploaded in ADP</td>
</tr>
<tr>
<td>2</td>
<td>Payroll team has not receiving inputs on time</td>
<td>Payroll team has not receiving inputs on time</td>
<td>Due incorrect payroll processing leads to employee dissatisfaction and also Escalation from supervisors, TED and HR.</td>
<td>All inputs received by payroll team are manual</td>
<td>All inputs are coming from SAP in upgradable format to ADP</td>
</tr>
<tr>
<td>3</td>
<td>Delay in responding to mails</td>
<td>Delay in responding to mails</td>
<td>Employee dissatisfaction.</td>
<td>Huge inflow of mails</td>
<td>Team is realigned in two separate shifts to answer the mails. A dash board is published on daily basis</td>
</tr>
<tr>
<td>4</td>
<td>Errors in payroll processing</td>
<td>Employee may not get accurate salary on time</td>
<td>Employee will not get accurate pay. Rework at Windsu</td>
<td>Oversight by processing team</td>
<td>Maker checker concept is in place who validates total payroll before uploading to ADP</td>
</tr>
</tbody>
</table>

5.6.1. CONGRATULATE THE TEAM

The scientific and technological deployment of 8D together with lean tenants application to payroll processes which optimizes and streamlined the basis objectives of the study namely reduction in inflow of mails and enhancement in the accuracy of the payroll process. The effort of the team is highly obliged by the function head as well as employee and stake holders.

5.7. BENEFITS OF THIS PROJECT

- The Net Satisfaction Score of the function was up by 2300 basis points YOY (i.e. from 34.8 to 58.2)
• Employee has to update the details in only one place instead of 2 places.

• Newly enrolled people will get the confirmation to payroll through an auto trigger mail.

• Employee will get a response to his mails on time, employee will get accurate pay.

• The accuracy of payroll is improved from 97.5% to 99.9%.

• New enrollment module is developed.

• Major inputs are received from a single reliable source SAP.

• The inflows of mails are reduced by 50%.

• The payroll process is streamlined.

• The additional load on payroll team to respond to mails on time is balanced by alignment of team into different shifts.

• There is a dashboard in place to monitor the inflow of mails and will be published to management on daily basis.