Chapter 1: Introduction to inflammation and targets involved in inflammation.

1.1. Inflammation. 06
1.1.1. Acute inflammation. 07
1.1.2. Chronic inflammation. 10
1.1.3. Mediators of inflammation. 11
1.1.4. Cyclooxygenase. 13
1.1.5. Cyclooxygenase pathway. 16
1.1.6. Lipooxygenase pathway. 17
1.1.7. Nonsteroidal anti-inflammatory drugs. 20
1.2. p38 MAP kinase inhibitors. 29
1.3. References. 31

Chapter 2: Synthesis of 1, 5-diaryl-4, 5-dihydro-1H-pyrazol-3-yl-substituted-heteroazoles.

2.1. Section A: Synthesis of 1,5-diaryl-4,5-dihydro-1H-pyrazol-3-yl-5-substituted-[1,3,4]-oxadiazoles.

2.1.1. Introduction. 37
2.1.2. Present work. 39
2.1.3. Experimental & Spectral Data. 42
2.2. **Section B: Synthesis of 1,5-diaryl-4,5-dihydro-1H-pyrazol-3-yl-5-substituted-[1,2,4]-oxadiazoles and tetrazoles.**

2.2.1. Present work.
2.2.2. Experimental & Spectral Data.

2.3. **Section C: Biological evaluation of diaryl pyrazoline compounds for anti-inflammatory activity and analgesic activity.**

2.3.1. Anti-inflammatory activity.

 a. Anti-inflammatory activity by carrageenan footpad edema.
 b. COX-2 inhibition assay.

2.3.2. Analgesic activity by acetic acid writhing method.

2.4. References.

Chapter 3: Synthesis of 1,5-diaryl-pyrazole-3-heteroazoles.

3.1. **Section A: Synthesis of 1,5-diaryl-pyrazol-3-yl-5-substituted-[1,3,4]-oxadiazoles.**

3.1.1. Introduction.
3.1.2. Present work.
3.1.3. Experimental & Spectral Data.

3.2. **Section B: Synthesis of 1,5-diaryl-pyrazol-3-yl-5-substituted-[1,2,4]-oxadiazoles and tetrazoles.**

3.2.1. Present work.
3.2.2. Experimental & Spectral Data.

3.3. **Section C: Biological evaluation of diaryl pyrazole compounds for anti-inflammatory activity and analgesic activity.**

3.3.1. Anti-inflammatory activity.
Chapter 4: Synthesis of monoaryl-pyrazole-4-heteroazoles.

4.1. Section A: Synthesis of 1-(4-trifluoromethyl-phenyl)-pyrazol-4-yl-5-substituted-[1,3,4]-oxadiazoles.

4.1.1. Introduction. 122
4.1.2. Present work. 125
4.1.3. Experimental & Spectral Data. 127

4.2. Section B: Synthesis of 1-substituted-phenyl-pyrazol-4-yl-5-substituted-[1,2,4]-oxadiazoles and tetrazoles.

4.2.1. Present work. 138
4.2.2. Experimental & Spectral Data. 140

4.3. Section C: Biological evaluation of monaryl pyrazole compounds for anti-inflammatory activity and analgesic activity.

4.3.1. Anti-inflammatory activity.
 a. Anti-inflammatory activity by carrageenan footpad edema. 150
 b. COX-2 inhibition assay. 153

4.3.2. Analgesic activity by acetic acid writhing method. 154

4.4. References. 157
Chapter 5: Synthesis of substituted imidazoles as anti-inflammatory agents.

5.1. Section A: Synthesis of 4-[1-(4-Fluoro-phenyl)-4-(5-Substituted-[1,3,4]oxadiazol-2-yl)-IH-imidazol-2-yl]-pyridine as p38 MAP kinase inhibitors.

5.1.1. Introduction. 159
5.1.2. Present work. 162
5.1.3. COX-2 inhibition assay. 164
5.1.4. Experimental & Spectral Data. 167

5.2. Section B: Development of new synthetic methodologies for Benzimidazole, imidazopyridine, Benzoheteroaolones and 2-Aminobenzothiazoles.

1. Lithium bromide catalyzed solvent free method for synthesis of 2-substituted benzimidazoles and imidazopyridines.

5.2.1. Introduction. 179
5.2.2. Present work. 180
5.2.3. Experimental and spectral data. 185

2. Lithium bromide catalyzed unique reaction of alkyl cyanoformate with 1-amino 2-hetroaryl substrates and its application towards synthesis of benzoheteroaolones and 2-aminobenzothiazoles.

5.2.2.1. Introduction. 189
5.2.2.2. Present work. 190
5.2.2.3. Experimental and spectral data. 195

5.3 References 201

Chapter 6: Conclusion. 205