NOMENCLATURE

\(A_c \) cell area, cm\(^2\)

\(E \) Nernst potential or open circuit voltage, V

\(E_0 \) ideal cell voltage at standard conditions, V

\(F \) Faraday constant, 96485 C/mole

\(G \) Gibbs free energy, kJ/kg

\(H \) Enthalpy, kJ

\(h \) Specific enthalpy, kJ/kg

\(I \) exergy destruction rate, kW

\(j \) current density, mA/cm\(^2\)

\(\text{LHV} \) lower heating value, kJ/kg

\(m \) mass flow rate, kg/s

\(P \) pressure, kPa

\(P_{\text{ele,DC}} \) DC power output of the fuel cell stack, kW

\(P_{\text{ele,AC}} \) AC power output of the fuel cell stack, kW

\(P_{\text{net}} \) net power output of the plant, kW

\(P_{\text{gt}} \) Net power output from gas turbine, kW

\(Q \) heat transfer rate, kW

\(Q_{\text{Gen,FC}} \) heating rate generated within the cell stack, kW

\(R \) universal gas constant, 8.314 J/mole K

\(R_g \) Gas constant kJ/kg K

\(r_p \) Pressure Ratio
s Specific entropy, kJ/kgK
SCR ratio of number of moles of steam to carbon
T temperature, K
TIT turbine inlet temperature, K
T₀ reference temperature, K
Uᵢ fuel utilization factor
V voltage, V
Vₘᵋss sum of the voltage losses due to irreversibilities

Greek Symbols

ψ specific exergy flow, kJ/kg
Φ exergy ratio
λ Air stoichiometric ratio
γ Ratio of specific heats
° Reference conditions

Subscript

a Anode
c Cathode
cc Combustion chamber
ex Exergy
ele Electrical
Ex,ch chemical exergy of fuel, kJ/kg
Ex,fm mechanical exergy of fuel, kJ/kg
f Fuel
fc fuel cell
Gen generator
in Inlet
invert DC–AC inverter
out Outlet
Ph,f physical exergy of fuel, kJ/kg
rxn Chemical reaction
th,f thermal exergy of fuel, kJ/kg
th Thermal

Acronyms & Abbreviations

CHP Combined Heat & Power
FC Fuel cell
GT Gas turbine
MCFC Molten Carbonate Fuel Cell
OCV Open Circuit Voltage
OCED Organization for Economic Corporation Development
PACE Power at Combined Efficiency
STAG Steam and Gas Turbine
SOFC Solid Oxide Fuel Cell
TIT Turbine inlet temperature