Bibliography
BIBLIOGRAPHY


303


Juge, N., Frans, M., Morris, V. and Svensson, B. (2002). The starch binding domain of
glucoamylase from Aspergillus niger: overview of its structure, function, and role in raw-

Kaneko, K., Kim, L. and Sato, S. (2005). Raw starch digesting amylases from Bacillus sp.:


MG-cp-2 under submerged (SmF) and solid state (SSF) fermentation. Lett Appl
Microbiol. 34: 317-22.

various starches by synergistic action of alpha-amylase and glucoamylase in aqueous two

various starches by alpha amylase and glucoamylase in PEG-dextran and PEG-substrate


formation by a selected strain of Aspergillus oryzae. Mikrobiolgia. 52: 422-7.


and neutral glucoamylase of a thermophilic mould Thermomucor indicae – seudaticae.

using wheat bran in submerged and solid state fermentations. Indian J Microbiol. 43:
143–5.


Production of Microbial Enzymes and Their Applications. Takamine Laboratory, Division of Miles Laboratories, Inc., Clifton, New Jersey.


322


Zhi, W., Deng, Q., Song, J. Gu, M. and Ouyang, E. (2005). One-step purification of α-amylase from the cultivation supernatant of recombinant *Bacillus subtilis* by high-speed counter-


*Original not seen*

Websites consulted:
www.answers.com
www.bccresearch.com
www.biocon.com
www.earth.policy.org
www.eere.energy.gov
www.enzymeindia.com
www.ethanolindia.net
www.eufic.com
www.findarticles.com
www.ftns.wau.nl/prock/index.htm
www.greenplanet.eoloss.net
www.mapenzymes.com
www.novozymes.com
www.textanchem.com
www.zytex.net