Chapter 5

Some irreducibility results for truncated binomial expansions

5.1 Introduction

In this chapter, for positive integers \(k \) and \(n \) with \(k \leq n - 1 \), \(P_{n,k}(x) \) denotes the polynomial \(\sum_{j=0}^{k} \binom{n}{j} x^j \), where \(\binom{n}{j} = \frac{n!}{j!(n-j)!} \). In 2007, Filaseta, Kumchev and Pasechnik considered the problem of irreducibility of \(P_{n,k}(x) \) over the field \(\mathbb{Q} \) of rational numbers. In the case \(k = 2 \), \(P_{n,2}(x) \) has discriminant \(-n^2 + 2n\) and hence is irreducible over \(\mathbb{Q} \). Another easy case is when \(k = n - 1 \). In this situation, \(P_{n,k}(x) \) is irreducible over \(\mathbb{Q} \) if and only if \(n \) is a prime number. In fact if \(n \) is a prime number, then \(x^{n-1}P_{n,n-1}(1/x) = x^{n-1} + \binom{n}{1} x^{n-2} + \cdots + \binom{n}{n-2} x + \binom{n}{n-1} \) is an Eisenstein polynomial with respect to \(n \) and if \(n \) is composite, then \(P_{n,n-1}(x) = (x + 1)^n - x^n \) is clearly reducible. In [F-K-P], Filaseta et al. proved that for any fixed integer \(k \geq 3 \), there exists an integer \(n_0 \) depending on \(k \) such that \(P_{n,k}(x) \) is irreducible over \(\mathbb{Q} \) for every \(n \geq n_0 \) (see [F-K-P, Theorem 3]). So there are indications that \(P_{n,k}(x) \) is irreducible for every \(n, k \) with \(3 \leq k \leq n - 2 \).

In the present chapter, the irreducibility of \(P_{n,k}(x) \) is proved for those \(n, k \) for which \(2 \leq 2k \leq n < (k + 1)^3 \). We consider the irreducibility of the polynomial

\[
P_{n,k}(x-1) = \sum_{j=0}^{k} \binom{n}{j} (x-1)^j = \sum_{j=0}^{k} \binom{n}{j} \sum_{i=0}^{j} \binom{j}{i} (-1)^{j-i} x^i = \sum_{i=0}^{k} \sum_{j=i}^{k} \binom{n}{j} \binom{j}{i} (-1)^{j-i} x^i
\]
\[\sum_{i=0}^{k} \sum_{j=i}^{k} \binom{n}{i} \binom{n-i}{j-i} (-1)^{j-i} x^i = \sum_{i=0}^{k} \binom{n}{i} \sum_{t=0}^{k-i} \binom{n-i}{t} (-1)^t x^i = \sum_{i=0}^{k} c_i x^i, \]

where \(c_i = \binom{n}{i} \sum_{t=0}^{k-i} \binom{n-i}{t} (-1)^t \). As in [F-K-P], on using the identity
\[
\sum_{i=0}^{a} (-1)^i \binom{b}{t} = (-1)^a \binom{b-1}{a}, \quad a < b \text{ non-negative integers},
\]
a simple calculation shows that
\[
c_i = (-1)^{k-i} \frac{n(n-1) \cdots (n-i+1)(n-i+2) \cdots (n-k)}{i!(k-i)!}.
\]

In fact we shall prove the irreducibility of \(P_{n,k}(x-1) \) using Newton polygons with respect to primes strictly greater than \(k \) dividing \(\binom{n}{k} \) and some results of Erdős, Selfridge, Saradha, Shorey and Laishram regarding such primes proved in [Sa-Sh], [La-Sh]. Our method also works to prove the irreducibility of polynomials
\[
F_{n,k}(x) = \sum_{i=0}^{k} a_i c_i x^i,
\]
where \(c_i \) are as above, \(a_0, a_1, \ldots, a_k \) are non-zero integers and each \(a_i \) has all of its prime factors \(\leq k \).

Precisely stated, we prove

Theorem 5.1.1. Let \(k \) and \(n \) be positive integers such that \(2k \leq n < (k+1)^3 \). Then \(P_{n,k}(x) \) is irreducible over \(\mathbb{Q} \).

Indeed we prove the following more general result from which the above theorem is quickly deduced.

Theorem 5.1.2. Let \(k \) and \(n \) be positive integers such that \(8 \leq 2k \leq n < (k+1)^3 \) and \(F_{n,k}(x) \) be as in (5.2). Then \(F_{n,k}(x) \) is irreducible over \(\mathbb{Q} \) except possibly when \((n,k) \) belongs to the set \(\{(8,4),(10,5),(12,6),(16,8)\} \).

It may be pointed out that the polynomial \(F_{10,5}(x) \) with \(c_i \) as defined in (5.1) given by
\[
F_{10,5}(x) = 2000 \cdot c_5 x^5 - 375 \cdot c_4 x^4 - 9 \cdot c_3 x^3 + 10 \cdot c_2 x^2 - 27 \cdot c_1 x + 25 \cdot c_0
\]
has $7x^2 + 7x + 1$ as a factor which shows that Theorem 5.1.2 indeed has exceptions.

In the course of the proof of Theorem 5.1.2, we prove the following result which is of independent interest as well.

Theorem 5.1.3 Let k, n be integers such that $n \geq k + 2 \geq 4$. Suppose there exists a prime $p > k$, p divides a number $n - l, 1 \leq l \leq k - 1$, with exact power $e \geq 1$ such that $gcd(e, l) \leq 2$ and $gcd(e, k - l) \leq 2$. If $l_1 < k/2$ is a positive integer such that $l \not\in \{l_1, 2l_1, k - l_1, k - 2l_1\}$, then $F_{n,k}(x)$ cannot have a factor of degree l_1 over \mathbb{Q}.

5.2 Notations and Preliminary Results

Let p be a prime number. For any non-zero integer a, $v_p(a)$ will denote the p-adic valuation of a, i.e., the highest power of p dividing a and $v_p(0)$ will be denoted by ∞. Let $f(x) = \sum_{j=0}^{n} a_j x^j$ be a polynomial over \mathbb{Q} with $a_0 a_n \neq 0$. Let P_i stand for the point in the plane having coordinates $(i, v_p(a_{n-i}))$ with $a_{n-i} \neq 0$, $0 \leq i \leq n$. Let μ_{ij} denote the slope of the line joining the points P_i and P_j when $a_{n-j}a_{n-j} \neq 0$. Let i_1 be the largest index $0 < i_1 < n$ such that $\mu_{0i_1} = \min\{\mu_{0j} | 0 < j \leq n, a_{n-j} \neq 0\}$. If $i_1 < n$, let i_2 be the largest index such that $i_1 < i_2 \leq n$ and $\mu_{i_1i_2} = \min\{\mu_{ij} | i_1 < j \leq n, a_{n-j} \neq 0\}$ and so on. The Newton polygon of $f(x)$ with respect to p is the polygonal path having segments $P_0P_{i_1}, P_{i_1}P_{i_2}, \ldots, P_{n-1}P_{i_k}$ with $i_k = n$. These segments are called the edges of the Newton polygon and their slopes form a strictly increasing sequence.

We state below a well-known result to be used in the sequel (see [Rib2, 5.1.F]).

Theorem 5.2.A. Let $(x_0, y_0), (x_1, y_1), \ldots, (x_r, y_r)$ denote the successive vertices of the Newton polygon of a polynomial $g(x)$ with respect to a prime p. Let \tilde{v}_p denote the unique extension of v_p to the algebraic closure of the field \mathbb{Q}_p of p-adic numbers. Then $g(x)$ factors over \mathbb{Q}_p as $g_1(x)g_2(x) \cdots g_r(x)$ where the degree of $g_i(x)$ is...
\[x_i - x_{i-1}, \, i = 1, 2, \ldots, r \] and all the roots of \(g_i(x)\) in the algebraic closure of \(\mathbb{Q}_p\) have \(v_p\) valuation \(\frac{b_i - a_i}{x_i - x_{i-1}}\). In particular all the roots of an irreducible factor of \(g(x)\) over \(\mathbb{Q}_p\) will have the same \(v_p\) valuation.

Notations. For an integer \(\nu > 1\), let \(P(\nu)\) denote the greatest prime divisor of \(\nu\) and let \(\pi(\nu)\) denote the number of primes not exceeding \(\nu\). For a real number \(\rho\), \([\rho]\) stands for the greatest integer not exceeding \(\rho\). As in [La-Sh], \(\delta(k)\) will denote the integer defined for \(k \geq 3\) by
\[
\delta(k) = \begin{cases}
2, & \text{if } 3 \leq k \leq 6; \\
1, & \text{if } 7 \leq k \leq 16; \\
0, & \text{otherwise}.
\end{cases}
\]

For numbers \(n, k\) and \(h\), \([n, k, h]\) will stand for the set of all pairs \((n, k), (n+1, k), \ldots, (n+h-1, k)\). In particular \([n, k, 1] = \{(n, k)\}\).

As in [La-Sh], we shall denote by \(S\) the union of the sets
\[
[6, 3, 1], [8, 3, 3], [18, 3, 1], [9, 4, 1], [10, 5, 4], [16, 5, 1], [18, 5, 3], [27, 5, 2], [12, 6, 2], [20, 6, 1], [14, 7, 3], [18, 7, 1], [20, 7, 2], [30, 7, 1], [16, 8, 1], [21, 8, 1], [26, 13, 3], [30, 13, 1], [32, 13, 2], [36, 13, 1], [28, 14, 1], [33, 14, 1], [36, 17, 1]
\]
and by \(T\) the union of the sets
\[
[38, 19, 3], [42, 19, 1], [40, 20, 1], [94, 47, 3], [100, 47, 1], [96, 48, 1], [144, 71, 2], [145, 72, 1], [146, 73, 3], [156, 73, 1], [148, 74, 1], [162, 79, 1], [166, 83, 1], [172, 83, 1], [190, 83, 1], [192, 83, 1], [178, 89, 1], [190, 89, 1], [192, 89, 1], [210, 103, 2], [212, 103, 2], [216, 103, 2], [213, 104, 1], [217, 104, 1], [214, 107, 12], [216, 108, 10], [218, 109, 9], [220, 110, 7], [222, 111, 5], [224, 112, 3], [226, 113, 7], [250, 113, 1], [252, 113, 2], [228, 114, 5], [253, 114, 1], [230, 115, 3], [232, 116, 1], [346, 173, 1], [378, 181, 1], [380, 181, 2], [381, 182, 1], [392, 193, 2], [393, 194, 1], [396, 197, 1], [398, 199, 3], [400, 200, 1], [552, 271, 5], [553, 272, 1], [555, 272, 2], [556, 273, 1], [554, 277, 3], [558, 277, 5], [556, 278, 1], [559, 278, 4], [560, 279, 3], [561, 280, 1], [562, 281, 7], [564, 282, 5], [566, 283, 5], [576, 283, 1], [568, 284, 3], [570, 285, 1], [586, 293, 1].
\]

With the above notations, the following theorem due to Laishram and Shorey
[La-Sh, Theorem 3] holds.

Theorem 5.2.B. Let \(n \geq 2k \geq 6 \) and \(f_1 < f_2 < \cdots < f_\mu \) be integers in \([0,k)\). Assume that the greatest prime factor of \((n - f_1)\cdots(n - f_\mu) \leq k\). Then \(\mu \leq k - \left[\frac{3}{4} \pi(k) \right] + 1 - \delta(k) \) unless \((n,k) \in S \cup T\).

The corollary stated below is an immediate consequence of Theorem 5.2.B in view of the fact that \(k - \mu \geq \left[\frac{3}{4} \pi(k) \right] - 1 \geq 5 \) for \(k \geq 19\).

Corollary 5.2.C. Let \(n \) and \(k \) be positive integers with \(n \geq 2k \geq 38 \). Then there are at least five distinct terms of the product \(n(n - 1)\cdots(n - k + 1) \) each divisible by a prime exceeding \(k \) except when \((n,k) \in T\).

The following two theorems are used in the proof of Proposition 5.2.1 (see [Sa-Sh, Theorem 2, Theorem A]).

Theorem 5.2.D. For \(n > k^2 \geq 5^2 \) the equation \(n(n + 1)\cdots(n + i - 1)(n + i + 1)\cdots(n + k - 1) = by^2 \) has no solution in positive integers \(n, k, b, y \) with \(P(b) \leq k \) and \(0 < i < k - 1 \).

Theorem 5.2.E. For \(n > k^2 \geq 4^2 \) the equation \(n(n + 1)\cdots(n + k - 1) = by^2 \) has no solution in positive integers \(n, k, b, y \) with \(P(b) \leq k \).

We now prove some results to be used in the proof of Theorem 5.1.3.

Proposition 5.2.1. Let \(k \geq 6 \) and \(n > k^2 \). Then there exist two distinct terms \(n + r \) and \(n + s \) of the product \(n(n + 1)\cdots(n + k - 1) \) which are divisible by primes \(> k \) exactly to an odd power.

Proof. Suppose the proposition is false for some \(n \) and \(k \) with \(k \geq 6 \) and \(n > k^2 \). Let \(\Delta(n,k) = n(n + 1)\cdots(n + k - 1) \). Thus either \(v_p(\Delta(n,k)) \) is even for all primes \(p > k \) or there is exactly one term \(n + i \) and a prime \(p > k \) such that \(v_p(\Delta(n,k)) \) is odd. The first possibility is excluded since for any positive integer \(b \) with \(P(b) \leq k \), the equation

\[
n(n + 1)\cdots(n + k - 1) = by^2
\]
has no solution in positive integers \(n, k, y \) when \(n > k^2 \geq 4^2 \) by Theorem 5.2.E. We now consider the case when there is exactly a term \(n+i \) and a prime \(p > k \) such that \(\nu_p(\Delta(n,k)) \) is odd. Suppose first that \(0 < i < k - 1 \). Removing the term \(n+i \) from \(\Delta(n,k) \), we see that \(n(n+1) \cdots (n+i-1)(n+i+1) \cdots (n+k-1) = b_1y_1^2 \) where \(P(b_1) \leq k \) which is impossible by virtue of Theorem 5.2.D.

It remains to consider the case when \(i = 0 \) or \(k - 1 \). Let \(\Delta' \) denote the product \((n+1) \cdots (n+k-1) \) or \(n(n+1) \cdots (n+k-2) \) according as \(i = 0 \) or \(k - 1 \). Then \(\Delta' \) is a product of \(k - 1 \) consecutive integers such that

\[
\Delta' = b_2y_2^2
\]

with \(P(b_2) \leq k \). This is impossible when \(P(b_2) \leq k - 1 \) by Theorem 5.2.E. It only remains to deal with the situation when \(P(b_2) = k \). Then \(k \) will be a prime dividing only one term of the product \(\Delta' \), say \(k \) divides \(n+j, j \neq i \). We remove the term \(n+j \) of the product \(\Delta' \) and it is clear from (5.3) that

\[
\frac{\Delta'}{n+j} = b_3y_3^2, \quad P(b_3) \leq k - 2.
\]

It is immediate from (5.4) and Theorem 5.2.D that \(n+j \) is the first or last term of the product \(\Delta' \) as \(k - 1 \geq 5 \). Thus we see that \(\frac{\Delta'}{n+j} \) is the product of \(k - 2 \) consecutive integers. This is impossible by Theorem 5.2.E.

Proposition 5.2.2. Let \(n, k \) be positive integers with \(n \geq k + 2 \geq 4 \) and \(F_{n,k}(x) \) be given by (5.2). Suppose there exists a prime \(p > k \) such that \(e \geq 1 \) is the exact power of \(p \) dividing \(n-l \) for some \(l, 1 \leq l \leq k - 1 \). Let \(d = \gcd(e,l) \) and \(d' = \gcd(e,k-l) \).

Then the following hold.

(i) The edges of the Newton polygon of \(F_{n,k}(x) \) with respect to \(p \) have slopes \(\frac{e}{k-l}, \frac{e}{l} \).

(ii) Each irreducible factor of \(F_{n,k}(x) \) over \(\mathbb{Q}_p \) has degree a multiple of \(\frac{l}{d} \) or of \(\frac{k-l}{d'} \) and there exists at least one irreducible factor of each of these two types.

(iii) If \(d = d' = 1 \), then \(F_{n,k}(x)/a_kc_k \) factors over \(\mathbb{Q}_p \) as a product of two distinct monic irreducible polynomials of degrees \(l \) and \(k - l \).
Proof. We consider the Newton polygon of $F_{n,k}(x)$ with respect to the prime p. In view of (5.1), the vertices of the Newton polygon are $(0,e), (k-l,0), (k,e)$. Thus the Newton polygon has two edges, one from $(0,e)$ to $(k-l,0)$ and other from $(k-l,0)$ to (k,e) with respective slopes $\frac{e}{k-l}$ and $\frac{e}{l}$ proving (i).

Using Theorem 5.2.A, it follows that $F_{n,k}(x)$ factors over \mathbb{Q}_p as $g(x)h(x)$ where degree of $g(x) = k-l$ and degree of $h(x) = l$. It will be shown that each irreducible factor of $g(x)$ over \mathbb{Q}_p has degree a multiple of $\frac{1}{d}$ or $\frac{k-l}{d}$. Let $g_1(x)$ be an irreducible factor of $g(x)$ over \mathbb{Q}_p and α be a root of $g_1(x)$ in the algebraic closure of \mathbb{Q}_p. Let ν_p be as in Theorem 5.2.A and ν' denote the valuation of $\mathbb{Q}_p(\alpha)$ obtained by restricting ν_p. Then by Theorem 5.2.A,

$$\nu'(\alpha) = \frac{-e}{k-l} = \frac{-e/d}{(k-l)/d}.$$

So $\frac{k-l}{d}$ divides the index of ramification of ν'/ν_p which divides $[\mathbb{Q}_p(\alpha) : \mathbb{Q}_p] = \deg g_1(x)$. Arguing similarly we see that any irreducible factor $h_1(x)$ of $h(x)$ over \mathbb{Q}_p has degree a multiple of l/d. Hence assertion (ii) follows. Assertion (iii) is an immediate consequence of (ii).

The last assertion quickly yields the following result.

Corollary 5.2.3. If for a pair (n,k), $n \geq k+2$, there exist terms $n-l', n-l'', 1 \leq l' < l'' < k$, divisible respectively by primes p', p'' exceeding k exactly to the first power such that $l' + l'' \neq k$, then $F_{n,k}(x)$ is irreducible over \mathbb{Q}.

The following proposition is already known (cf. [F-K-P, Lemma 1]). For the sake of completeness, it is proved here.

Proposition 5.2.4. Let n,k and $F_{n,k}(x)$ be as in Proposition 5.2.2. Let p be a prime $> k$ and $e > 0$ be such that $\nu_p(n) = e$. Then every irreducible factor of $F_{n,k}(x)$ over \mathbb{Q}_p has degree a multiple of $\frac{k}{D}$, where $D = \gcd(e,k)$.

Proof. The vertices of the Newton polygon of $F_{n,k}(x)$ with respect to p are $(0,e), (k,0)$. Thus the Newton polygon has only one edge whose slope is $-e/k$. So arguing as in Proposition 5.2.2, any irreducible factor of $F_{n,k}(x)$ must have degree a multiple of k/D.

49
5.3 Proof of Theorem 5.1.3

Using Proposition 5.2.2 (with \(d, d'\) atmost 2), it follows that each irreducible factor of \(F_{n,k}(x)\) over \(\mathbb{Q}_p\) has degree belonging to \(\left\{ \frac{l}{2}, l, \frac{k-l}{2}, k-l \right\}\) and the factorisation of \(F_{n,k}(x)\) into irreducible factors over \(\mathbb{Q}_p\) is given by \(F(x)G(x)\) or \(F_1(x)F_2(x)G(x)\) or \(F(x)G_1(x)G_2(x)\) or \(F_1(x)F_2(x)G_1(x)G_2(x)\) where \(F(x), G(x)\) are of degree \(l, k-l\) respectively and \(F_i(x), G_i(x)\) have degrees \(l/2, (k-l)/2\) respectively for \(1 \leq i \leq 2\). Consequently any irreducible factor of \(F_{n,k}(x)\) over \(\mathbb{Q}\) must have degrees in the set

\[
\left\{ \frac{l}{2}, l, \frac{k-l}{2}, k-l, \frac{2k-l}{2}, \frac{k+l}{2}, k \right\}.
\]

Given that \(l < k\), the elements of this set that can be less than \(k/2\) are \(l/2, l, (k-l)/2\) and \(k-l\). The conditions in Theorem 5.1.3 imply that \(l_1\) is not among \(l/2, l, (k-l)/2\) and \(k-l\), so the theorem follows.

5.4 Proof of Theorems 5.1.2 and 5.1.1

With \(S\) and \(T\) as in Theorem 5.2.B, we first prove

Lemma 5.4.1. For \((n, k) \in S \cup T, k \geq 4, F_{n,k}(x)\) is irreducible over \(\mathbb{Q}\) except possibly when \((n, k)\) belongs to the subset \(S'\) of \(S\) given by \(S' = \{(10,5), (12,6), (16,8)\}\).

Proof. Let \(S''\) denote the subset of \(S\) given by

\[
S'' = \{(9,4), (12,5), (16,5), (18,5), (27,5)\}.
\]

Observe that if \(n\) is divisible by a prime \(p > k\) with \(v_p(n) = 1,\) then \(x^kF_{n,k}(1/x)\) is an Eisenstein polynomial with respect to \(p\) and so \(F_{n,k}(x)\) is irreducible over \(\mathbb{Q}\). Further if two distinct terms \(n - l_1, n - l_2\) of the product \(n(n-1) \cdots (n-k+1)\) are divisible by primes \(p_1\) and \(p_2\) exceeding \(k\) such that \(v_{p_1}(n - l_1) = 1\) and \(l_1 + l_2 \neq k\), then in view of the above observation and Corollary 5.2.3, \(F_{n,k}(x)\) is irreducible over \(\mathbb{Q}\). For each \((n, k)\) belonging to \(T \cup (S \setminus S' \cup S'')\) with \(n\) not divisible by any prime \(> k\) up to the first power, Table 1 at the end of this section indicates two primes \(p_1\) and \(p_2\) satisfying the above property. It can be easily seen that for \((n, k) \in S''\), \(F_{n,k}(x)\) is an Eisenstein polynomial with respect to the prime 5, \(F_{12,5}(x)\) is Eisenstein.
with respect to 7, $F_{18,5}(x)$, $F_{27,5}(x)$ are Eisenstein with respect to 11 and $F_{18,5}(x)$ is Eisenstein with respect to 13. Hence the lemma is proved.

Lemma 5.4.2. For $8 \leq n < 5^3$, the polynomial $F_{n,A}(x)$ is irreducible over \mathbb{Q} except possibly when n belongs to the set $U = \{8, 50, 98, 100\}$.

Proof. As pointed out in the proof of Lemma 5.4.1, we need to verify the irreducibility of $F_{n,A}(x)$ when n is not divisible by any prime more than 4 exactly with the first power. For such n not exceeding 124 and n not belonging to the set $\{8, 9, 18, 27, 50, 98, 100\}$, Table 2 at the end of this section indicates two terms $n - l', n - l''$, $1 \leq l', l'' \leq 3$, $l' + l'' \neq 4$ such that $n - l', n - l''$ are divisible by primes p', p'' (respectively) up to the first power only. So the lemma is proved in view of Corollary 5.2.3 and the fact that $F_{9,4}$, $F_{18,4}$ and $F_{27,4}$ are Eisenstein polynomials with respect to primes 5, 7 and 23 respectively.

Proof of Theorem 5.1.2. We divide the proof into two cases.

Case I. $8 \leq 2k \leq n < (k + 1)^2$. Note that the theorem is already proved in the present case for $k = 4$ by virtue of Lemma 5.4.2, so it may be assumed that $k \geq 5$ here. Applying Theorem 5.2.B, we see that there exist at least three terms $n - l_i$, $i \in \{1, 2, 3\}$ which are divisible by primes exceeding k exactly up to the first power unless $(n, k) \in S \cup T$. Using Proposition 5.2.2 (iii), $F_{n,k}(x)/\alpha_k c_k$ factors over \mathbb{Q}_{α_k} as a product of two distinct monic irreducible polynomials of degree l_i and $k - l_i$ for $1 \leq i \leq 3$. If $F_{n,k}(x)$ were reducible over \mathbb{Q}, then $F_{n,k}(x)$ will have a factorization of the type $F_{n,k}(x) = \alpha_k c_k G_i(x) H_i(x)$ where $G_i(x), H_i(x)$ are monic irreducible polynomials belonging to $\mathbb{Q}[x]$ with degrees $k - l_i, l_i$ respectively. This is impossible as l_1, l_2 and l_3 are distinct. So the theorem is proved in the present case when (n, k) does not belong to $S \cup T$. When $(n, k) \in (S \setminus S') \cup T$ with $k \geq 4$, the irreducibility of $F_{n,k}(x)$ follows from Lemma 5.4.1.

Case II. $k \geq 4$, $(k + 1)^2 \leq n < (k + 1)^3$. In this case, we first show that $F_{n,k}(x)$ cannot factor over \mathbb{Q} as a product of two irreducible polynomials of degree $k/2$ each. For this it is enough to show that there exists $l' \neq k/2$, $0 \leq l' \leq k - 1$ such that $n - l'$
is divisible by a prime \(p' > k \) exactly with the first power. If \(l' = 0 \), then as pointed out in the opening lines of the proof of Lemma 5.4.1, \(F_{n,k}(x) \) is irreducible over \(\mathbb{Q} \).

If \(l' > 1 \) then by Proposition 5.2.2 (iii), \(F_{n,k}(x) \) has two irreducible factors of degree \(l' \) and \(k - l' \) over \(\mathbb{Q}_{p'} \). This leads to a contradiction as \(l' \neq k/2 \) thereby proving the irreducibility of \(F_{n,k}(x) \) over \(\mathbb{Q} \). The existence of a term \(n - l' \neq n - \frac{k}{2} \), \(0 < l' < k - 1 \), which is divisible by some prime \(p' > k \) with \(v_{p'}(n - l') = 1 \) is guaranteed for \(k \geq 6 \) by Proposition 5.2.1 as \((k + 1)^2 \leq n < (k + 1)^3 \) in the present situation. This proves the assertion stated in the opening lines of Case II.

It only remains to be shown that \(F_{n,k}(x) \) cannot have a factor of degree less than \(k/2 \) over \(\mathbb{Q} \). Suppose to the contrary that it has a factor of degree \(l_1 < k/2 \) over \(\mathbb{Q} \).

We make some claims.

Claim 1: \(P(n) \leq k \).

Suppose not. Let \(p \) be a prime \(> k \) dividing \(n \) with exact power \(e \geq 1 \). Then \(e \leq 2 \) since \(n < (k + 1)^3 \). So by Proposition 5.2.4, every irreducible factor of \(F_{n,k}(x) \) over \(\mathbb{Q}_p \) has degree a multiple of \(k \) or \(\frac{k}{2} \) according as \(e = 1 \) or 2 respectively. This is not possible in view of our supposition.

Claim 2: There are at most four distinct terms in the product \(n(n - 1) \cdots (n - k + 1) \) each of which is divisible by some prime \(> k \).

Assume the contrary. Then there is a term \(n - l \) with \(0 \leq l < k \) and a prime \(p > k \) with \(p \) dividing \((n - l) \) such that \(l \notin \{ l_1, 2l_1, k - l_1, k - 2l_1 \} \) where \(l_1 \) is as in the paragraph preceding Claim 1. Note that \(l > 0 \) in view of Claim 1. Further \(e = v_p(n - l) \leq 2 \) implying that \(F_{n,k}(x) \) cannot have a factor of degree \(l_1 \) over \(\mathbb{Q} \) by Theorem 5.1.3, which contradicts our supposition made just before Claim 1.

Claim 3: There are at most two distinct terms in the product \(n(n - 1) \cdots (n - k + 1) \) which are divisible by a prime \(> \sqrt{n} \).

Suppose not. Let \(1 \leq l'_1 < l'_2 < l'_3 \) be such that there exist primes \(p_i > \sqrt{n} \) with \(p_i \) dividing \(n - l'_i \). Note that \(v_{p_i}(n - l'_i) = 1 \) for \(1 \leq i \leq 3 \). Then \(e_i = 1 \) for each \(i \in \{1, 2, 3\} \). Since \((k + 1)^2 \leq n \), in view of Proposition 5.2.2 (iii), it follows that \(F_{n,k}(x) \) factors over \(\mathbb{Q}_{p_i} \) as a product of two non-associate irreducible polynomials.
of degree l_i' and $k - l_i'$ for $1 \leq i \leq 3$. Arguing as in Case I, we get a contradiction as l_1', l_2' and l_3' are distinct.

From Claim 2, Corollary 5.2.C and Lemma 5.4.1, it follows that $k \leq 18$. Note that for $k = 4$, in view of Lemma 5.4.2, we have only to consider $n = 50, 98, 100$ as $5^2 \leq n < 125$. For each of these values of n, $F_{n,k}(x)$ must be irreducible over \mathbb{Q} by virtue of Claim 1, as $P(n)$ is more than 4. For $k \geq 5$, by virtue of Claim 1, we may first restrict to those n for which $P(n) \leq k$. Further by Claims 2 and 3, those n can be excluded for which $n(n - 1) \cdots (n - k + 1)$ has either five terms divisible by a prime $> k$ or three terms divisible by a prime $> \sqrt{n}$. We use Sage mathematics software for the above computations. Then we are left with the following pairs (n, k) given by

$$(50, 5), (64, 5), (100, 5), (128, 5), (200, 5), (50, 6).$$

All these pairs satisfy the hypothesis of Corollary 5.2.3 as is clear from Table 3. This completes the proof of the theorem.

Proof of Theorem 5.1.1

In view of Theorem 5.1.2., we need to prove the irreducibility of $P_{n,k}(x)$ only when $1 \leq k \leq 3$ with $2k \leq n < (k + 1)^3$ or (n, k) belongs to $\{(8, 4), (10, 5), (12, 6), (16, 8)\}$. Using Maple, we have verified the irreducibility of $P_{n,k}(x)$ for these values of (n, k).

53
<table>
<thead>
<tr>
<th>(n, k)</th>
<th>$E[n, k, h]$</th>
<th>Primes (n, k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20, 5, 1</td>
<td>17, 19</td>
<td>162, 79, 1</td>
</tr>
<tr>
<td>20, 6, 1</td>
<td>17, 19</td>
<td>166, 83, 1</td>
</tr>
<tr>
<td>14, 7, 3</td>
<td>11, 13</td>
<td>172, 83, 1</td>
</tr>
<tr>
<td>18, 7, 1</td>
<td>13, 17</td>
<td>190, 83, 1</td>
</tr>
<tr>
<td>20, 7, 1</td>
<td>17, 19</td>
<td>192, 83, 1</td>
</tr>
<tr>
<td>21, 7, 1</td>
<td>17, 19</td>
<td>178, 89, 1</td>
</tr>
<tr>
<td>30, 7, 1</td>
<td>13, 29</td>
<td>190, 89, 1</td>
</tr>
<tr>
<td>21, 8, 1</td>
<td>17, 19</td>
<td>192, 89, 1</td>
</tr>
<tr>
<td>26, 13, 3</td>
<td>19, 23</td>
<td>210, 103, 1</td>
</tr>
<tr>
<td>30, 13, 1</td>
<td>19, 23</td>
<td>212, 103, 2</td>
</tr>
<tr>
<td>32, 13, 2</td>
<td>29, 31</td>
<td>216, 103, 2</td>
</tr>
<tr>
<td>36, 13, 1</td>
<td>29, 31</td>
<td>213, 104, 1</td>
</tr>
<tr>
<td>28, 14, 1</td>
<td>17, 19</td>
<td>217, 104, 1</td>
</tr>
<tr>
<td>33, 14, 1</td>
<td>29, 31</td>
<td>214, 107, 12</td>
</tr>
<tr>
<td>36, 17, 1</td>
<td>29, 31</td>
<td>216, 108, 10</td>
</tr>
<tr>
<td>38, 19, 3</td>
<td>23, 29</td>
<td>218, 109, 9</td>
</tr>
<tr>
<td>42, 19, 1</td>
<td>37, 41</td>
<td>220, 110, 7</td>
</tr>
<tr>
<td>40, 20, 1</td>
<td>31, 37</td>
<td>222, 111, 5</td>
</tr>
<tr>
<td>94, 47, 3</td>
<td>89, 83</td>
<td>224, 112, 3</td>
</tr>
<tr>
<td>100, 47, 1</td>
<td>83, 89</td>
<td>226, 113, 7</td>
</tr>
<tr>
<td>96, 48, 1</td>
<td>79, 83</td>
<td>250, 113, 1</td>
</tr>
<tr>
<td>114, 71, 2</td>
<td>101, 103</td>
<td>252, 113, 2</td>
</tr>
<tr>
<td>145, 72, 1</td>
<td>101, 103</td>
<td>228, 114, 5</td>
</tr>
<tr>
<td>146, 73, 3</td>
<td>101, 103</td>
<td>253, 114, 1</td>
</tr>
<tr>
<td>156, 73, 1</td>
<td>109, 113</td>
<td>230, 115, 3</td>
</tr>
<tr>
<td>148, 74, 1</td>
<td>107, 113</td>
<td>232, 116, 1</td>
</tr>
</tbody>
</table>
Table 2.

<table>
<thead>
<tr>
<th>n</th>
<th>n − l', n − l'', p', p''</th>
<th>n</th>
<th>n − l', n − l'', p', p''</th>
<th>n</th>
<th>n − l', n − l'', p', p''</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>10, 11, 5, 11</td>
<td>48</td>
<td>46, 47, 23, 47</td>
<td>81</td>
<td>79, 80, 79, 5</td>
</tr>
<tr>
<td>16</td>
<td>14, 15, 7, 5</td>
<td>49</td>
<td>46, 47, 23, 47</td>
<td>96</td>
<td>94, 95, 47, 19</td>
</tr>
<tr>
<td>25</td>
<td>22, 23, 11, 23</td>
<td>64</td>
<td>62, 63, 31, 7</td>
<td>121</td>
<td>119, 120, 17, 5</td>
</tr>
<tr>
<td>32</td>
<td>30, 31, 5, 31</td>
<td>72</td>
<td>70, 71, 5, 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>34, 35, 17, 5</td>
<td>75</td>
<td>73, 74, 73, 37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3.

<table>
<thead>
<tr>
<th>(n, k)</th>
<th>n − l', n − l''</th>
<th>(n, k)</th>
<th>n − l', n − l''</th>
<th>(n, k)</th>
<th>n − l', n − l''</th>
</tr>
</thead>
<tbody>
<tr>
<td>(50, 5)</td>
<td>46, 47</td>
<td>(100, 5)</td>
<td>97, 99</td>
<td>(200, 5)</td>
<td>197, 199</td>
</tr>
<tr>
<td>(64, 5)</td>
<td>61, 63</td>
<td>(128, 5)</td>
<td>126, 127</td>
<td>(50, 6)</td>
<td>46, 47</td>
</tr>
</tbody>
</table>