CONTENTS

List of figures i-iii
List of tables iv-v
Abstract vi-ix

Chapter 1: INTRODUCTION 1-13
 1.1 Introduction 1
 1.1.1 Seismicity and Seismotectonics 1
 1.1.2 Seismotectonics of Northeast India 5
 1.1.3 Seismic Hazard and Seismic Risk 7
 1.2 Statement of the problem 9
 1.3 Objectives of the study 10
 1.4 Working hypothesis of the study 11
 1.5 Database and Methodology 11
 1.6 Significance of the study 12
 1.7 Organisation of the study 13

Chapter 2: GEOTECTONIC SETTING AND SEISMIC HISTORY OF NORTHEAST INDIA 14-33
 2.1 Geographical Outline 14
 2.2 Geotectonic Setting 16
 2.3 Geology 21
 2.4 Seismic history 25
 2.4.1 The Cachar Earthquake 26
 2.4.2 The Shillong Earthquake 26
 2.4.3 The Meghalaya Earthquake 27
 2.4.4 The Dhubri Earthquake 28
 2.4.5 The Hojai Earthquake 28
 2.4.6 The Arunachal Earthquake 28
 2.4.7 The Great Assam Earthquake 29
 2.4.8 The Arunachal Pradesh (1954) Earthquake 31
 2.4.9 The Arunachal Pradesh (1957) Earthquake 31
2.4.10 The Cachar (1984) Earthquake 31
2.4.11 The Tipi Earthquake 32
2.4.12 The Manipur-Myanmar Earthquake 32
2.4.13 The Silchar Earthquake 32
2.4.14 The Sikkim Earthquake 33
2.4.15 The Nagaon Earthquake 33
2.4.16 Recent Scenario 33

Chapter 3: REVIEW OF RELEVANT LITERATURE OF THE REGION 34-39

Chapter 4: PREPARATION OF A COMPREHENSIVE EARTHQUAKE DATAFILE 40-64

4.1 Introduction 40
4.2 Data Source 43
4.3 Methodology 44
 4.3.1 Modification of Richter’s Relation between surface wave magnitude and body wave magnitude 44
 4.3.2 Applicability of surface wave magnitude and body wave magnitude 45
 4.3.3 Analysis of completeness of the earthquake data file 46
4.4 Results and Observations 47
 4.4.1 Modification of Richter’s Relation between surface wave magnitude and body wave magnitude 47
 4.4.2 Applicability of surface wave magnitude and body wave magnitude 51
 4.4.3 Analysis of completeness of the earthquake data file 58
4.5 Conclusion 62

Chapter 5: EARTHQUAKE DISTRIBUTION PATTERN 65-87

5.1 Introduction 65
5.2 Data Source 67
5.3 Methodology 67
5.4 Results and Observations 68
 5.4.1 Areal distribution of earthquakes and identification of tectonic block 68
 5.4.2 Classification of Earthquakes 75
 5.4.3 Earthquake distribution pattern and seismo-tectonic correlation 79
 5.4.4 Fracture and distribution of major earthquakes 83
5.4.5 Spatio-Temporal variation and Quiescent Region 85

5.5 Conclusion 85

Chapter 6: TEMPORAL VARIATION OF EARTHQUAKES AND ESTIMATION OF RETURN PERIOD 88-117

6.1 Introduction 88

6.2 Data Source 90

6.3 Methodology 90

6.3.1 Temporal variation of earthquakes 90

6.3.2 Return period analysis 90

6.3.3 Correlation between b – value and Fractal Dimension 93

6.4 Results and Observations 94

6.4.1 Temporal variation of earthquakes 94

6.4.2 Correlation Coefficient of seismic activity among the blocks 98

6.4.3 Return Period of Earthquakes 98

6.4.4 Fractal Dimension and b-value mapping 110

6.5 Conclusion 116

Chapter 7: STRAIN ENERGY RELEASE PATTERN OF THE REGION 118-133

7.1 Introduction 118

7.2 Data Source 119

7.3 Methodology 119

7.3.1 Application of the method to the study region 120

7.3.2 Effect of release of strain energy by a tectonic block on nearby blocks 121

7.4 Results and Observations 121

7.4.1 Temporal variation of strain energy released 121

7.4.2 Spatial variation of strain energy released 126

7.4.3 Effect of release of strain energy by a tectonic block on nearby blocks 129

7.5 Conclusion 132

Chapter 8: SEISMIC HAZARD ANALYSIS OF THE REGION 134-172

8.1 Introduction 134

8.2 Data Source 139
8.3 Methodology
 8.3.1 Estimation of PGA
 8.3.2 Seismic hazard analysis by Bayesian statistics
 8.3.3 Seismic hazard analysis using Poisson’s model
8.4 Results and Observations
 8.4.1 Seismic hazard analysis using Margaris relation
 8.4.2 Seismic hazard analysis by Bayesian statistics
 8.4.3 Seismic hazard analysis using Poisson’s model
8.5 Conclusion

Chapter 9: Summary
References
Appendix-I: Earthquake Datafile
Appendix-II: Publications