Chapter 5

On limits of sequences of elements algebraic over a complete field

5.1 Origin of the problem

Let \(v \) be a non-trivial real (rank one) valuation of a field \(K \) with respect to which it is complete and \(\bar{v} \) be the unique extension of \(v \) to a fixed algebraic closure \(\bar{K} \) of \(K \). In 1917, Ostrowski proved that the valued field \((\bar{K}, \bar{v})\) is complete if and only if \(\bar{K} \) is a finite extension of \(K \) (see [Os1] or [Bou2, p.467-468]). In 1927, Artin and Schreier gave a characterization of such fields by proving that the algebraic closure \(\bar{K} \) of a field \(K \) is a finite extension of \(K \) if and only if either \(K \) is algebraically closed or \(K \) is a real closed field and \(\bar{K} = K(\sqrt{-1}) \) (cf. [Ar-Sc], [Jac, §11.7, Theorem 11.14]). Hence for many interesting complete valued fields \((K, v)\) like the completions of algebraic number fields, the limit of a Cauchy sequence of elements of \((\bar{K}, \bar{v})\) does not always belong to \(\bar{K} \). This gives rise to the following natural question.

Is it possible to characterize those Cauchy sequences \(\{b_n\} \) of elements of \(\bar{K} \) whose limit is not in \(\bar{K} \)?

In this chapter, we give a characterization of such sequences (modulo addition by null sequences) which will be stated after introducing some notations in the next
section (see Theorem 5.2.2). It is also proved that when a Cauchy sequence \(\{b_n\} \) of elements of \(K \) is such that the sequence \(\{[K(b_n) : K]\} \) of degrees of the extensions \(K(b_n)/K \) does not tend to infinity as \(n \) approaches infinity, then \(\{b_n\} \) has a limit in \(K \).

5.2 Definitions, notations and statements of the main results

Let \(K \) be a complete valued field with respect to a real valuation \(v \) and \((K, \bar{v})\) be as above. For any \(a \) belonging to \(K \), \(\text{deg} a \) will denote the degree of the extension \(K(a)/K \). When \(a \) belongs to \(K \setminus K \), let \(M(a, K) \) denote the subset of real numbers given by

\[
M(a, K) = \{v(a - 0) \mid \beta \in \overline{K}, [K(\beta) : K] < [K(a) : K]\}
\]

and \(\delta_K(a) \) the supremum of \(M(a, K) \).

In 2001, Aghigh and Khanduja [Ag-Khl] proved that \(M(\alpha, K) \) has a maximum element for each \(a \) in \(K \setminus K \), if and only if every simple algebraic extension of \((K, v)\) is defectless\(^1\). When \((K, v)\) has the above property, then to each \(a \in K \setminus K \), one can associate an element \(a_1 \) (not necessarily unique) belonging to \(\overline{K} \) of smallest degree over \(K \) such that \(\bar{v}(a - a_1) = \delta_K(a) \); such a pair \((a, a_1)\) is called a distinguished pair. In other words, a pair \((a, a_1)\) of elements of \(\overline{K} \) is called a distinguished pair (more precisely a \((K, v)\)-distinguished pair) if the following three conditions are satisfied:

(i) \(\bar{v}(a - a_1) = \delta_K(a) \),

(ii) \(\text{deg} a > \text{deg} a_1 \),

(iii) if \(\beta \) belonging to \(\overline{K} \) has degree strictly less than that of \(a_1 \), then \(\bar{v}(a - \beta) < \bar{v}(a - a_1) \).

A sequence \(\{a_n\} \) of elements of \(\overline{K} \) will be called an inverted distinguished sequence (more precisely \((K, v)\)-inverted distinguished sequence) if \(a_0 \in K \), \((a_{i+1}, a_i)\)

\(^1\)Indeed this result has been proved in [Ag-Khl] when \((K, v)\) is a henselian valued field of arbitrary rank.
is a distinguished pair for each \(i \geq 0 \) and \(v(\alpha_{n+1} - \alpha_n) = \delta_K(\alpha_{n+1}) \to \infty \) as \(n \to \infty \) (see §5.4 for examples).

Observe that every \((K, v)\)-inverted distinguished sequence is a Cauchy sequence of elements of \(\overline{K} \) with respect to \(\bar{v} \).

We shall denote the prolongation of \(\bar{v} \) to the completion \(\overline{K}^e \) of \(\overline{K} \) with respect to \(\bar{v} \) by \(\bar{v} \). With the above notation, we prove:

THEOREM 5.2.1. Let \((K, v)\) be a complete rank one valued field and \(\bar{v} \) be the unique prolongation of \(v \) to a fixed algebraic closure \(\overline{K} \) of \(K \). Let \(\{b_n\} \) be a Cauchy sequence of elements of \(\overline{K} \) with respect to \(\bar{v} \). Then \(\{b_n\} \) converges to an element of \(\overline{K} \) with respect to \(\bar{v} \) provided the sequence \(\{\deg b_n\} \) does not tend to infinity as \(n \to \infty \).

THEOREM 5.2.2. Let \((K, v)\) and \((\overline{K}, \bar{v})\) be as above and \(\overline{K}^e \) be the completion of \(\overline{K} \) with respect to \(\bar{v} \). Assume that \(K(\alpha) \) is a defectless extension of \((K, v)\) for every \(\alpha \) in \(\overline{K} \). Then an element \(t \) of \(\overline{K}^e \) is transcendental over \(K \) if and only if there exists an inverted distinguished sequence of elements of \(\overline{K} \) which converges to \(t \).

As an application of the above theorem, we shall prove:

COROLLARY 5.2.3. Let \((K, v)\) be a complete discrete valued field with value group \(\mathbb{Z} \). Let \(p \) be a prime number different from the characteristic of \(K \). Let \(s \) be a positive integer such that \(\frac{v(p)}{p - 1} \leq s \). If \(\pi \) belonging to \(K \) has \(v \)-valuation 1, then the series \(\sum_{n=1}^{\infty} (\pi^n \cdot \pi^{-1/p^n}) \) converges to an element which is transcendental over \(K \).

The following corollary is an immediate consequence of the above result.

COROLLARY 5.2.4. Let \(p \) be a prime number. The series \(\sum_{n=1}^{\infty} (p^n \cdot p^{-1/p^n}) \) converges to an element which is transcendental over the field of \(p \)-adic numbers.
The result stated below follows quickly from Theorem 5.2.2 and Example 5.4.2.

COROLLARY 5.2.5. Let p_1, p_2, \ldots be a sequence of distinct prime numbers and \mathbb{Q} be the field of rational numbers. Then $\sum_{i=1}^{\infty} \sqrt{p_i} t^i$ is transcendental over the field $\mathbb{Q}(t)$ of Laurent series in an indeterminate t.

It may be pointed out that Theorem 5.2.2 generalizes Propositions 2.1, 2.2 of [A-P-Z4] which are proved in the particular case when K is the field of p-adic numbers. Our proof is more rigorous as it takes care of non-discrete valuations also.

5.3 Proof of Theorem 5.2.1

We prove a lemma which will be used in the proof of Theorem 5.2.1. It is also of independent interest.

LEMMA 5.3.1. Let v be a henselian valuation of arbitrary rank of a field K and $(\overline{K}, \overline{v})$ be as above. Let $f(x)$ and $g(x)$ belonging to $K[x]$ be two monic, irreducible, separable polynomials of same degree m. Let α, β be any roots of $f(x)$ and $g(x)$ respectively. Then the roots $\alpha_1, \ldots, \alpha_m$ of $f(x)$ and β_1, \ldots, β_m of $g(x)$ can be arranged such that $v(\alpha_i - \beta_i) \geq v(\alpha - \beta)$ for $1 \leq i \leq m$.

Proof. Let N denote the smallest normal extension of K containing $\alpha_1, \ldots, \alpha_m$ and β_1, \ldots, β_m. Set $\delta = v(\alpha - \beta)$ and $H = \{ \sigma \in \text{Gal}(N/K) \mid v(\sigma(\alpha) - \alpha) \geq \delta \}$. Keeping in mind that $v(\alpha - \beta) = \delta$, we see that

$$H = \{ \sigma \in \text{Gal}(N/K) \mid v(\alpha - \sigma(\alpha)) \geq \delta \} = \{ \sigma \in \text{Gal}(N/K) \mid v(\beta - \sigma(\beta)) \geq \delta \}. \quad (5.1)$$

Clearly H is a subgroup of $\text{Gal}(N/K)$ and $H \supseteq \text{Gal}(N/K(\alpha)) \cup \text{Gal}(N/K(\beta))$. Thus if M denotes the fixed field of H, then $M \subseteq K(\alpha) \cap K(\beta)$. Let r, s denote respectively the degrees of M/K and $K(\alpha)/M$. Let $\{\sigma_1, \ldots, \sigma_r\}$ be the set of K-automorphisms of N which are distinct on M. Let $\{\tau_1, \ldots, \tau_s\}$ be a system
of coset representatives of $\text{Gal}(N/M)/\text{Gal}(N/K(a))$, i.e., τ_1, \ldots, τ_s are distinct on $K(\alpha)$ but identity on M. Let $\{\tau'_1, \ldots, \tau'_r\}$ be a system of coset representatives of $\text{Gal}(N/M)/\text{Gal}(N/K(\beta))$. We claim that the sets $\{\sigma_i \circ \tau_j(\alpha) \mid 1 \leq i \leq r, 1 \leq j \leq s\}$ and $\{\sigma_i \circ \tau'_j(\beta) \mid 1 \leq i \leq r, 1 \leq j \leq s\}$ constitute respectively all the K-conjugates of α and β. Keeping in mind that $[K(\alpha) : K] = [K(\beta) : K] = rs$, the claim is proved once we show that when $(i, j) \neq (k, l)$, then

$$\sigma_i \circ \tau_j(\alpha) \neq \sigma_k \circ \tau_l(\alpha) \quad (5.2)$$

and

$$\sigma_i \circ \tau'_j(\beta) \neq \sigma_k \circ \tau'_l(\beta). \quad (5.3)$$

To prove (5.2), note that if $i = k$ and $\sigma_i \circ \tau_j(\alpha) = \sigma_k \circ \tau_l(\alpha)$, then $\tau_j(\alpha) = \tau_l(\alpha)$ which is possible only if $j = l$. When $i \neq k$, then the equality $\sigma_i \circ \tau_j(\alpha) = \sigma_k \circ \tau_l(\alpha)$ implies $\sigma^{-1}_k \circ \sigma_i \circ \tau_j \circ \sigma^{-1}_l(\alpha) = \alpha$ which implies $\sigma^{-1}_k \circ \sigma_i \circ \tau_l \circ \sigma^{-1}_l$ is identity on $K(\alpha)$ and thus identity on M. As τ_j, τ_l are identity on M, this leads to $\sigma^{-1}_k \circ \sigma_i$ being identity on M which is possible only if $i = k$. This completes the verification of (5.2).

Similarly we can verify (5.3) and hence the claim. The lemma follows from the claim once we show that

$$v(\sigma_i \circ \tau_j(\alpha) - \sigma_i \circ \tau'_j(\beta)) \geq \delta, \quad 1 \leq i \leq r, \quad 1 \leq j \leq s.$$

Keeping in view that (K, v) is henselian and that τ_j, τ'_j belong to the group $H = \text{Gal}(N/M)$ given by (5.1), the above inequality follows because

$$v(\sigma_i \circ \tau_j(\alpha) - \sigma_i \circ \tau'_j(\beta)) = v(\tau_j(\alpha) - \tau'_j(\beta))$$

$$= v(\tau_j(\alpha) - \alpha + \alpha - \beta + \beta - \tau'_j(\beta))$$

$$\geq \min \{v(\tau_j(\alpha) - \alpha), v(\alpha - \beta), v(\beta - \tau'_j(\beta))\}$$

$$= \delta.$$
COROLLARY 5.3.2. Let \(v \) be a real, henselian valuation of a field \(K \). Let \(\{ \beta_j \} \) be a Cauchy sequence of elements of \(K \) with respect to \(\tilde{v} \) such that each \(\beta_j \) is separable of same degree over \(K \). Let \(f_j(x) = x^h + a_{ij}x^{h-1} + \ldots + a_{hj} \) be the minimal polynomial of \(\beta_j \) over \(K \). Then the sequences \(\{ a_{ij} \} \) are Cauchy with respect to \(v \) for \(1 \leq i \leq h \).

Proof. If the sequence \(\{ \beta_j \} \) converges to 0, then \(\tilde{v}(\beta_j) \) tends to infinity as \(j \to \infty \) and hence \(v(a_{ij}) \to \infty \) as \(j \to \infty \) for \(1 \leq i \leq h \) so that \(\{ a_{ij} \} \to 0 \).

Suppose that \(\{ \beta_j \} \) does not converge to 0. We first show that there exists \(j_0 \) such that for all \(j \geq j_0 \), \(\tilde{v}(\beta_j) = \tilde{v}(\beta_{j_0}) \). The assumption \(\{ \beta_j \} \) does not tend to 0 implies that there exists a real number \(I > 0 \) such that for any given \(j \), there exists \(k > j \) satisfying

\[
\tilde{v}(\beta_k) < I.
\]

Since \(\{ \beta_j \} \) is a Cauchy sequence, there exists \(j_0 \) such that

\[
\tilde{v}(\beta_k - \beta_j) \geq I \text{ for all } j \geq j_0, \ k \geq j_0.
\] \hfill (5.4)

Given \(j_0 \), there exists \(k_0 > j_0 \) with

\[
\tilde{v}(\beta_{k_0}) < I.
\]

The above inequality together with (5.4) shows that for \(j \geq j_0 \), we have

\[
\tilde{v}(\beta_j) = \min\{\tilde{v}(\beta_j - \beta_{k_0}), \tilde{v}(\beta_{k_0})\} = \tilde{v}(\beta_{k_0}) = \mu \text{ (say).}
\]

Keeping in mind the relations between the roots and coefficients of a polynomial and applying Lemma 5.3.1 to the polynomials \(f_j(x) \), \(f_{j+1}(x) \) (with roots \(\beta_j \), \(\beta_{j+1} \) respectively), we quickly deduce that for \(j \geq j_0 \),

\[
\tilde{v}(a_{ij} - a_{ij+1}) \geq (i-1)\mu + \tilde{v}(\beta_j - \beta_{j+1})
\]

which shows that \(\{ a_{ij} \} \) is a Cauchy sequence as \(\{ \beta_j \} \) is so.
Proof of Theorem 5.2.1. Let b denote the limit of $\{b_n\}$ in the completion of (\overline{K}, ν). Clearly we need to prove the theorem when $b \neq 0$. It is given that $\{\deg b_n\}$ does not tend to infinity as n approaches infinity. If necessary on replacing $\{b_n\}$ by a subsequence, we may suppose that b_n has same degree and same separable degree over K for all $n \geq 1$. In case $\text{char } K = p > 0$, on replacing $\{b_n\}$ by $\{b_n^k\}$ for a suitable $k > 0$, we may assume that each b_n is separable over K and $[K(b_n) : K]$ is same for all n. Let $f_n(x) = x^h + a_{1n}x^{h-1} + \ldots + a_{hn}$ denote the minimal polynomial of b_n over K. Since (\overline{K}, ν) is complete and $\{b_n\}$ is a Cauchy sequence, $\{a_{in}\}_n$ are Cauchy sequences for $1 \leq i \leq h$ by virtue of Corollary 5.3.2. Denote by a_i the limit of the sequence $\{a_{in}\}_n$ and by $f(x)$ the polynomial $x^h + a_1x^{h-1} + \ldots + a_h$. We are going to prove that

\[\lim_{n \to \infty} \nu(f_n(b)) = \infty. \tag{5.5} \]

As \(\lim_{n \to \infty} f_n(b) = f(b) \), the above equation (5.5) leads to $f(b) = 0$ which will prove that b is algebraic over K as desired.

To verify (5.5), write the Taylor series expansion of $f_n(b)$ as

\[f_n(b) = (b - b_n) \frac{f_n'(b_n)}{1!} + (b - b_n)\frac{f_n''(b_n)}{2!} + \ldots + (b - b_n)^h \frac{f_n^{(h)}(b_n)}{h!}. \tag{5.6} \]

Keeping in view that $b \neq 0$ and arguing as in the proof of Corollary 5.3.2, we see that $\nu(b_n) = \nu(b)$ for sufficiently large values of n. As the coefficients of $f_n(x)$ converge to the respective coefficients of $f(x)$, so whenever $a_i \neq 0$, then $\nu(a_{in}) = \nu(a_i)$ for sufficiently large n. Thus we conclude that there exists a real number C and an integer n_0 such that for all $n \geq n_0$ and for $1 \leq k \leq h$, we have

\[\nu \left(\frac{f_n^{(k)}(b_n)}{k!} \right) \geq C, \quad \nu(b - b_n) > 0. \]

The expansion (5.6) of $f_n(b)$ together with the two inequalities mentioned above implies that $\nu(f_n(b)) \geq C + \nu(b - b_n)$ for all $n \geq n_0$. Since $\nu(b - b_n)$ tends to infinity as n approaches infinity, it now follows that $\lim_{n \to \infty} \nu(f_n(b)) = \infty$. This proves (5.5)
and completes the proof of the theorem.

5.4 Some examples and preliminary results

We first give some examples of inverted distinguished sequences.

EXAMPLE 5.4.1. Let K be the field of p-adic numbers with the valuation v characterized by $v(p) = 1$ and v be the prolongation of v to the algebraic closure \overline{K} of K. Let $\{\alpha_n\}$ be a sequence of elements of \overline{K} defined by $\alpha_0 = p$,

$$
\alpha_n = p + p(p^{-1/p}) + \cdots + p^n(p^{-1/p^n}), \quad n \geq 1.
$$

Then $\{\alpha_n\}$ is a (K, v)-inverted distinguished sequence. For this it is enough to verify that $\deg \alpha_{n-1} < \deg \alpha_n$,

$$
\delta_K(\alpha_n) = v(\alpha_n - \alpha_{n-1}) = n - \frac{1}{p^n}, \quad n \geq 1, \quad (5.7)
$$

and that

whenever $\beta \in \overline{K}$, $v(\alpha_n - \beta) = n - \frac{1}{p^n}$, then $\deg \beta \geq \deg \alpha_{n-1}$. \quad (5.8)

We first calculate Krasner’s constant $\omega_K(\alpha_n)$, defined for any α belonging to $\overline{K}\setminus K$ by

$$
\omega_K(\alpha) = \max\{v(\alpha - \alpha') | \alpha' \neq \alpha \text{ runs over K-conjugates of α}\}.
$$

Let ζ_r, $r \geq 1$ denote a primitive p^r-th root of unity. Keeping in view that

$$
\prod_{i=1}^{p^r-1} (1 - \zeta_r^i) = p^r \quad \text{and} \quad v(1 - \zeta_r) = v(1 - \zeta_r) \quad \text{when} \quad p \text{ does not divide} \ j,
$$

we conclude that

$$
\bar{v}(1 - \zeta_r) \leq \frac{r}{p^r - p^r-1} \leq \frac{1}{p - 1};
$$

in fact $\bar{v}(1 - \zeta_r) = \frac{1}{p - 1}$. It now follows that if σ is any automorphism of \overline{K}/K.
which does not fix $p^{-1/p'}$, then for $0 < r < r'$, we have

$$\bar{v}(\sigma(p'^r.p^{-1/p'}) - p'^r.p^{-1/p'}) \leq r - \frac{1}{p'} + 1$$
$$\leq r' - \frac{1}{p'}$$
$$< r' - \frac{1}{p'}$$
$$\leq \bar{v}(\sigma(p'^r.p^{-1/p'}) - p'^r.p^{-1/p'}).$$

Consequently it follows that

$$\omega_K(\alpha_n) = \bar{v}((1 - \zeta_1)p^n.p^{-1/p^n}) = \frac{1}{p-1} + n - \frac{1}{p^n}, \ n \geq 1. \quad (5.9)$$

Applying (5.9) for $n - 1$, we see that

$$\omega_K(\alpha_{n-1}) = \frac{1}{p-1} + (n - 1) - \frac{1}{p^{n-1}} < n - \frac{1}{p^n} = \bar{v}(\alpha_n - \alpha_{n-1}).$$

The above inequality, by virtue of Krasner's Lemma, implies that $K(\alpha_{n-1}) \subseteq K(\alpha_n)$. Hence $K(\alpha_n) = K(p^{1/p^n})$ is an extension of degree p^n of K. In particular, $\deg \alpha_{n-1} < \deg \alpha_n$.

To verify (5.7), it is clearly enough to show that whenever $\gamma \in \overline{K}$ is such that

$$\bar{v}(\alpha_n - \gamma) > n - (1/p^n)$$

then $\deg \gamma \geq \deg \alpha_n$. On writing α_n as $\alpha_{n-1} + p^n(p^{-1/p^n})$ and keeping in view that $\bar{v}(\alpha_n - \gamma) > n - (1/p^n)$, we have

$$\bar{v}(\alpha_{n-1} - \gamma) = n - \frac{1}{p^n}.$$

Applying (5.9) for $n - 1$, it follows from the above equality that $\bar{v}(\alpha_{n-1} - \gamma) > \omega_K(\alpha_{n-1})$, which by virtue of Krasner's Lemma gives $K(\alpha_{n-1}) \subseteq K(\gamma)$. As $\bar{v}(\alpha_{n-1} - \gamma) = n - \frac{1}{p^n}$ and $\alpha_{n-1} - \gamma \in K(\gamma)$, it follows that the index of ramification of $K(\gamma)/K$ (with respect to v) is $\geq p^n$. Consequently $\deg \gamma \geq p^n = \deg \alpha_n$ which proves (5.7).
To verify (5.8), note that \(v(\alpha_n - \beta) = n - \frac{1}{p^n} \) together with \(v(\alpha_n - \alpha_{n-1}) = n - \frac{1}{p^n} \) implies that \(v(\beta - \alpha_{n-1}) \geq n - \frac{1}{p^n} > \omega_K(\alpha_{n-1}) \). Applying Krasner’s Lemma, we see that \(K(\alpha_{n-1}) \subseteq K(\beta) \) which in turn implies that \(\deg \beta \geq \deg \alpha_{n-1} \) as desired.

EXAMPLE 5.4.2. Let \(\mathbb{Q} \) be the field of rational numbers and \(p_1, p_2, \ldots \) be a sequence of distinct rational primes. Let \(K = \mathbb{Q}(t) \) be the field of Laurent series in an indeterminate \(t \) and \(v \) denote the \(t \)-adic valuation on \(K \) with \(v(t) = 1 \). Then the sequence \(\{\alpha_n\} \) defined by \(\alpha_0 = t, \alpha_n = t + t^2 + \sqrt{p_1} + t^3 + \sqrt{p_2} + \ldots + t^n \sqrt{p_n} \) is an inverted distinguished sequence with respect to \(v \). To prove this assertion, we first show that \(\bar{K}(\alpha_n) = K(t^{1/p_1}, \ldots, t^{1/p_n}) \). As usual, \(\bar{v} \) will denote the unique prolongation of \(v \) to the algebraic closure \(\bar{K} \) of \(K \).

Keeping in mind that the \(\bar{v} \)-residue \(\left(\frac{\alpha_n - t}{t} \right) \) of \(\left(\frac{\alpha_n - t}{t} \right) \) satisfies \(\left(\frac{\alpha_n - t}{t} \right)^2 = p_1 \), we see that the polynomial \(x^2 - p_1 \) has a simple zero in the residue field of the valuation obtained by restricting \(\bar{v} \) to \(K(\alpha_n) \). Applying Hensel’s Lemma [Rib, Chapter 5, Theorem 1], we conclude that the polynomial \(x^2 - p_1 \) has a zero in \(K(\alpha_n) \), i.e., \(\sqrt{p_1} \in K(\alpha_n) \). So \(K(\alpha_n) = K(\sqrt{p_1}, t^{1/p_1} + \sqrt{p_2} + \ldots + t^{n-1} \sqrt{p_n}) \). Repeating the above argument with \(t + t^2 \sqrt{p_2} + \ldots + t^{n-1} \sqrt{p_n} \), we see that \(\sqrt{p_2} \in K(\alpha_n) \). Continuing this process, we conclude that \(K(\alpha_n) = K(\sqrt{p_1}, \ldots, \sqrt{p_n}) \) is an extension of degree \(2^n \) over \(K \).

Keeping in mind that any automorphism \(\sigma \) of \(\bar{K}/K \) maps \(\sqrt{p_i} \) to \(\pm \sqrt{p_i} \), it is clear that

\[
\omega_K(\alpha_n) = n.
\]

As the characteristic of the residue field of \(\bar{v} \) is zero, \(K(\alpha_n)/K \) is a tame extension. It now follows from Theorem 2.2.A and the above equality that

\[
\delta_K(\alpha_n) = \omega_K(\alpha_n) = n.
\]

Thus the sequence \(\{\alpha_n\} \) will be proved to be an inverted distinguished sequence once we prove that \((\alpha_n, \alpha_{n-1}) \) is a distinguished pair for \(n \geq 1 \). Note that \(\bar{v}(\alpha_n - \alpha_{n-1}) = \bar{v}(\sqrt{p_n} t^n) = n = \delta_K(\alpha_n) \). So it only remains to be shown that

70
whenever $\beta \in \overline{K}$ satisfies $\nu(\alpha_n - \beta) = \delta_K(\alpha_n) = n$, then $\deg \beta \geq \deg \alpha_{n-1}$. Now $\nu(\alpha_n - \beta) = \nu(\alpha_n - \alpha_{n-1}) = n$ together with the formula for $\omega_K(\alpha_n)$ implies that

$$\nu(\beta - \alpha_{n-1}) \geq n > \omega_K(\alpha_{n-1})$$

which by Krasner’s Lemma shows that $K(\alpha_{n-1}) \subseteq K(\beta)$. Therefore $\deg \beta \geq \deg \alpha_{n-1}$ as desired.

The following lemmas will be used in the proof of Theorem 5.2.2. The first three lemmas proved below are already known (cf. [Ag-Kh2]). For reader’s convenience, these are proved here.

Lemma 5.4.3. Let (K, ν) be a complete valued field and $(\overline{K}, \overline{\nu})$ be as above. If (α, α_1) and (α_1, α_2) are two (K, ν)-distinguished pairs of elements of K, then $\overline{\nu}(\alpha - \alpha_2) = \delta_K(\alpha_1) < \delta_K(\alpha)$.

Proof. Since $\deg \alpha_2 < \deg \alpha_1$ and (α, α_1) is a distinguished pair, it follows from the definition of a distinguished pair that $\overline{\nu}(\alpha - \alpha_2) < \overline{\nu}(\alpha - \alpha_1)$. Consequently by the strong triangle law, we have

$$\delta_K(\alpha_1) = \overline{\nu}(\alpha_1 - \alpha_2) = \min\{\overline{\nu}(\alpha_1 - \alpha), \overline{\nu}(\alpha - \alpha_2)\} = \overline{\nu}(\alpha - \alpha_2),$$

as desired.

Lemma 5.4.4. Let (K, ν) and $(\overline{K}, \overline{\nu})$ be as in the foregoing lemma. If (α, α_1), (α, β_1) and (β_1, β_2) are (K, ν)-distinguished pairs of elements of K, then so is (α_1, β_2).

Proof. Observe that by virtue of the hypothesis, $\deg \alpha_1 = \deg \beta_1$ and

$$\overline{\nu}(\alpha_1 - \beta_1) \geq \min\{\overline{\nu}(\alpha_1 - \alpha), \overline{\nu}(\alpha - \beta_1)\} = \delta_K(\alpha). \quad (5.10)$$
Applying Lemma 5.4.3 to the distinguished pairs \((\alpha, \beta_1)\) and \((\beta_1, \beta_2)\), we see that
\[
\bar{v}(\alpha - \beta_2) = \bar{v}(\beta_1 - \beta_2) < \delta_K(\alpha).
\] (5.11)

It follows from (5.10), (5.11) and the strong triangle law that
\[
\bar{v}(\alpha_1 - \beta_2) = \min\{\bar{v}(\alpha_1 - \beta_1), \bar{v}(\beta_1 - \beta_2)\} = \bar{v}(\beta_1 - \beta_2).
\] (5.12)

If \(\gamma\) is in \(\overline{K}\) and \(\deg \gamma < \deg \alpha_1 = \deg \beta_1\), then keeping in view Lemma 5.4.3, we see that \(\bar{v}(\beta_1 - \gamma) \leq \delta_K(\beta_1) < \delta_K(\alpha)\). Therefore (5.10) together with the strong triangle law shows that
\[
\bar{v}(\alpha_1 - \gamma) = \min\{\bar{v}(\alpha_1 - \beta_1), \bar{v}(\beta_1 - \gamma)\} = \bar{v}(\beta_1 - \gamma).
\] (5.13)

If \(\gamma\) is as above, then \(\bar{v}(\beta_1 - \gamma) \leq \bar{v}(\beta_1 - \beta_2)\) with strict inequality if \(\deg \gamma < \deg \beta_2\). Therefore keeping in view (5.12) and (5.13), we conclude that
\[
\bar{v}(\alpha_1 - \gamma) = \min\{\bar{v}(\alpha_1 - \beta_1), \bar{v}(\beta_1 - \gamma)\} = \bar{v}(\alpha_1 - \beta_2)
\]
for all \(\gamma\) in \(\overline{K}\) with \(\deg \gamma < \deg \alpha_1\). In fact the above inequality is strict if \(\deg \gamma < \deg \beta_2\). This proves that \((\alpha_1, \beta_2)\) is a distinguished pair.

\textbf{DEFINITION.} Let \((K, v)\) and \((\overline{K}, \overline{v})\) as above. Let \(\alpha\) be an element of \(\overline{K}\). A chain \(\alpha = a_0, \ldots, a_r\) will be referred to as a saturated distinguished chain for \(\alpha\) (with respect to \((K, v)\)) if \((a_i, a_{i+1})\) is a \((K, v)\)-distinguished pair for \(0 \leq i < r - 1\) and \(a_r \in K\).

\textbf{LEMMA 5.4.5.} Let \((K, v)\) and \((\overline{K}, \overline{v})\) as in Lemma 5.4.3. If \(\alpha = \alpha_0, \alpha_1, \ldots, \alpha_r\) and \(\alpha = \beta_0, \beta_1, \ldots, \beta_s\) are two saturated distinguished chains for an element \(\alpha\) belonging to \(\overline{K}\), then \(r = s\).

\textit{Proof.} We apply induction on \(\deg \alpha\). When \(\deg \alpha = 2\), then clearly \(r = s = 1\). Assume that \(\alpha \in \overline{K}\) has degree greater than 2 and the result is true for chains of
those elements of \(\overline{K} \) which have degree less than the degree of \(\alpha \). As the lemma is trivially true when \(r = s = 1 \), we may assume, if necessary after renaming that \(s \geq 2 \). By Lemma 5.4.4, \((\alpha_1, \beta_2)\) is a distinguished pair. Hence \(\alpha_1, \alpha_2, \ldots, \alpha_r \) and \(\alpha_1, \beta_2, \ldots, \beta_s \) are two saturated distinguished chains for \(\alpha_1 \). The lemma now follows by induction.

Lemma 5.4.6. Let \((K,v)\) and \((\overline{K},\overline{v})\) be as above. Let \(\alpha = \alpha_0, \alpha_1, \ldots, \alpha_r \) be a saturated distinguished chain (with respect to \((K,v)\)) for an element \(\alpha \) of \(\overline{K}\setminus K \). Then

\[
\sup\{\overline{v}(\alpha - a) \mid a \in K\} = \overline{v}(\alpha - \alpha_r).
\]

Proof. We prove the result by induction on the length \(r \) of a saturated distinguished chain for \(\alpha \). If \(r = 1 \), then \((\alpha, \alpha_1)\) is a distinguished pair and \(\alpha_1 \in K \). The desired equality is obvious in the present case, because by definition

\[
\overline{v}(\alpha - \alpha_1) = \sup\{\overline{v}(\alpha - \beta) \mid \beta \in \overline{K}, \ deg \beta < deg \alpha\}.
\]

Suppose that the result is true for elements of \(\overline{K}\setminus K \) having saturated distinguished chain of length \(r - 1 \). Let \(\alpha \) be an element of \(\overline{K} \) with a saturated distinguished chain \(\alpha = \alpha_0, \ldots, \alpha_r \). Keeping in mind that \(deg \alpha > 1 \) and Lemma 5.4.3, we have for any \(a \in K \),

\[
\overline{v}(\alpha_1 - a) \leq \delta_K(\alpha_1) < \delta_K(\alpha);
\]

it now follows from the strong triangle law that

\[
\overline{v}(\alpha - a) = \min\{\overline{v}(\alpha - \alpha_1), \overline{v}(\alpha_1 - a)\} = \overline{v}(\alpha_1 - a). \tag{5.14}
\]

It is immediate from (5.14) and the induction hypothesis that

\[
\sup\{\overline{v}(\alpha - a) \mid a \in K\} = \sup\{\overline{v}(\alpha_1 - a) \mid a \in K\} = \overline{v}(\alpha_1 - \alpha_r).
\]

As \(\alpha_r \in K \), we have \(\overline{v}(\alpha_1 - \alpha_r) = \overline{v}(\alpha - \alpha_r) \) by (5.14); this together with the above equation gives the desired equality.
As in the previous chapters for \(L \subseteq K, R(L) \) will denote the residue field of the valuation obtained by restricting \(\overline{v} \) to \(L \).

Lemma 5.4.7. Let \((K,v) \) and \((K,\overline{v}) \) be as in Lemma 5.4.5 and \(\{\beta_i\} \) be a sequence of elements of \(\overline{K} \) having the same degree. Let \(\eta \) be an element of \(\overline{K}\backslash K \) such that \(\overline{v}(\eta - \beta_i) > \delta_K(\beta_i) \) for each \(i \). Suppose that the sequence \(\{\overline{v}(\eta - \beta_i)\} \) is strictly monotonically increasing with limit strictly greater than \(\delta_K(\eta) \). Then there exists \(j \) such that \(\overline{v}(K(\eta)) = \overline{v}(K(\beta_j)) \) and \(R(K(\eta)) = R(K(\beta_j)) \) for all \(i \geq j \).

Proof. Since \(\overline{v}(\eta - \beta_i) > \delta_K(\beta_i) \) for \(i \geq 1 \), on applying Generalized Fundamental Principle (stated in §2.2), we obtain

\[
\overline{v}(K(\beta_i)) \subseteq \overline{v}(K(\eta)), \ R(K(\beta_i)) \subseteq R(K(\eta)). \quad (5.15)
\]

Keeping in view that the sequence \(\{\overline{v}(\eta - \beta_i)\} \) is strictly monotonically increasing, we see that

\[
\overline{v}(\beta_i - \beta_{i+1}) = \min\{\overline{v}(\eta - \beta_i), \overline{v}(\eta - \beta_{i+1})\} = \overline{v}(\eta - \beta_i) > \delta_K(\beta_i).
\]

By virtue of Generalized Fundamental Principle, the above inequality implies that

\[
\overline{v}(K(\beta_i)) \subseteq \overline{v}(K(\beta_{i+1})), \ R(K(\beta_i)) \subseteq R(K(\beta_{i+1})). \quad (5.16)
\]

As all the extensions \(K(\beta_i)/K \) are of the same degree, it is clear from (5.16) that there exists a positive integer \(j \) such that for all \(i \geq j \),

\[
\overline{v}(K(\beta_i)) = \overline{v}(K(\beta_{i+1})), \ R(K(\beta_i)) = R(K(\beta_{i+1})).
\]

The above equations together with (5.15) and (5.16) give

\[
\overline{v}(K(\beta_i)) = \bigcup_{i \geq 1} \overline{v}(K(\beta_i)) \subseteq \overline{v}(K(\eta)), \ R(K(\beta_i)) = \bigcup_{i \geq 1} R(K(\beta_i)) \subseteq R(K(\eta)).
\]
Therefore the lemma follows immediately once we show that

$$
\nu(K(\eta)) \subseteq \bigcup_{i \geq 1} \nu(K(\beta_i)), \quad R(K(\eta)) \subseteq \bigcup_{i \geq 1} R(K(\beta_i)).
$$

To prove (5.17), it is clearly enough to show that if $F(\eta)$ is any element of $K[\eta]/K$, $F(x)$ being a polynomial over K of degree less than $\deg \eta$, then there exists a natural number k such that

$$
\nu(F(\eta)) > 0.
$$

Write $F(x) = c \prod_{l=1}^{m} (x - \gamma_l)$. Since $\deg \gamma_l \leq \deg F(x) < \deg \eta$, we have

$$
\nu(\eta - \gamma_l) \leq \delta_K(\eta) \text{ for } 1 \leq l \leq m.
$$

By hypothesis $\lim_{l \to \infty} \nu(\eta - \beta_l) > \delta_K(\eta)$. So there exists a number k such that

$$
\nu(\eta - \beta_k) > \delta_K(\eta).
$$

It now follows from (5.19), (5.20) and the strong triangle law that for $1 \leq l \leq m$,

$$
\nu(\beta_k - \gamma_l) = \min \{ \nu(\beta_k - \eta), \nu(\eta - \gamma_l) \} = \nu(\eta - \gamma_l) \leq \delta_K(\eta).
$$

On writing $\frac{F(\eta)}{F(\beta_k)}$ as $\prod_{l=1}^{m} \left(1 + \frac{\eta - \beta_k}{\beta_k - \gamma_l} \right)$ and using (5.20) and (5.21), we obtain (5.18).
5.5 A characterization of transcendental elements of \overline{K}^c

In this section, we prove Theorem 5.2.2 which is proved with the motivation of giving a characterization of all those Cauchy sequences $\{b_n\}$ of elements of \overline{K} whose limit is not in \overline{K}.

Proof of Theorem 5.2.2. Let $\{\alpha_n\}_{n > 0}$ be an inverted distinguished sequence of elements of \overline{K}, converging to an element t of \overline{K}^c. It will be shown that t is transcendental over K. Applying Lemma 5.4.3 to the distinguished pairs (α_{i+1}, α_i) and $(\alpha_{i+2}, \alpha_{i+1})$, we see that

$$v(\alpha_{i+1} - \alpha_i) < v(\alpha_{i+2} - \alpha_{i+1}), \ i \geq 0. \quad (5.22)$$

We first prove that for all $j \geq 0$

$$v(t - \alpha_j) = \delta_K(\alpha_{j+1}). \quad (5.23)$$

Fix any $j \geq 0$. Since $\lim_{n \to \infty} v(t - \alpha_n) = \infty$, we can choose an integer $m > j$ such that

$$v(t - \alpha_m) > \delta_K(\alpha_{j+1}). \quad (5.24)$$

It follows from (5.22), (5.24) and the strong triangle law that

$$v(t - \alpha_j) = v(t - \alpha_m + \alpha_m - \alpha_{m-1} + \ldots + \alpha_{j+1} - \alpha_j)$$

$$= v(\alpha_{j+1} - \alpha_j) = \delta_K(\alpha_{j+1})$$

which proves (5.23).

Suppose, to the contrary, that t is algebraic over K. Choose an integer j such
that \(\deg \alpha_j > \deg t \). Consequently by the definition of \(\delta_K(\alpha_j) \), we have

\[
\bar{v}(t - \alpha_j) \leq \delta_K(\alpha_j). \tag{5.25}
\]

But (5.23) together with (5.22) implies that \(\bar{v}(t - \alpha_j) = \delta_K(\alpha_{j+1}) > \delta_K(\alpha_j) \) which contradicts (5.25). This contradiction proves that \(t \) is transcendental over \(K \).

Conversely suppose that an element \(t \) of \(\overline{K}^\times \) is transcendental over \(K \). We shall define an inverted distinguished sequence \(\{\alpha_n\} \) of elements of \(K \) having \(t \) as the limit. For this we shall first inductively define pairs \((\alpha_j, \delta_j) \) belonging to \(K \times K \) satisfying the following properties (\(P_1 \)) and (\(P_2 \)) for \(i \geq 0 \) and then verify that \(\{\alpha_n\} \)

is an inverted distinguished sequence with limit \(t \):

\begin{align*}
(\text{\(P_1\)}) & \quad \max\{\bar{v}(t - \beta) \mid \beta \in K, \ \deg \beta \leq \deg \alpha_n\} = \delta_n; \\
(\text{\(P_2\)}) & \quad \max\{\bar{v}(t - \beta) \mid \beta \in K, \ \deg \beta < \deg \alpha_n\} = \delta_{n-1}.
\end{align*}

We first construct the pair \((\alpha_0, \delta_0) \). The set \(M = \{\bar{v}(t - a) \mid a \in K\} \) is bounded above, for otherwise one can choose a sequence \(\{a_n\} \) of elements of \(K \) such that \(\bar{v}(a_n - t) \to \infty \) as \(n \to \infty \). This is impossible as \(K \) is complete and \(t \notin K \). Let \(\delta_0 \)

denote the supremum of \(M \). We now prove that \(\delta_0 \in M \). Since \(K \) is dense in \(\overline{K}^\times \), there exists \(\xi \in \overline{K} \) such that \(\bar{v}(t - \xi) > \delta_0 \). Note that \(\xi \notin K \). It follows by virtue of the strong triangle law that

\[
\bar{v}(t - a) = \bar{v}(\xi - a) \quad \text{for each} \ a \in K.
\]

In particular

\[
\sup\{\bar{v}(t - a) \mid a \in K\} = \sup\{\bar{v}(\xi - a) \mid a \in K\}. \tag{5.26}
\]

By hypothesis, every simple algebraic extension of \((K, \bar{v})\) is defectless. Therefore \(\xi \) has a saturated distinguished chain, say \(\xi = \xi_0, \xi_1, \ldots, \xi_r \) (cf. [Ag-Kh2, Theorem 1.2], [Agh, Theorem 2.1.2]). Using (5.26) and Lemma 5.4.6, we see that

\[
\delta_0 = \sup\{\bar{v}(\xi - a) \mid a \in K\} = \bar{v}(\xi - \xi_r).
\]

Denote \(\xi_r \) by \(\alpha_0 \); this defines the pair \((\alpha_0, \delta_0) \). As induction hypothesis, suppose
that the pairs \((\alpha_0, \delta_0), \ldots, (\alpha_{n-1}, \delta_{n-1})\) have been defined satisfying the properties \((P_1)\) and \((P_2)\). Let \(A_n\) be the subset of \(\overline{K}\) defined by

\[A_n = \{ \alpha \in \overline{K} \mid \deg \alpha > \deg \alpha_{n-1}, \overline{v}(t - \alpha) > \delta_{n-1} \}. \]

Let \(h\) denote the minimum of the set \(\{ \deg \alpha \mid \alpha \in A_n \}\) and \(B_n\) the subset of \(A_n\) given by

\[B_n = \{ \beta \in \overline{K} \mid h = \deg \beta > \deg \alpha_{n-1}, \overline{v}(t - \beta) > \delta_{n-1} \}. \] (5.27)

Define a subset \(S_n\) of \(\mathbb{R}\) given by

\[S_n = \{ \overline{v}(t - \beta) \mid \beta \in B_n \}. \] (5.28)

We claim that the set \(S_n\) has a maximum element which will be denoted by \(\delta_n\) and can be written as \(\overline{v}(t - \alpha_n)\), \(\alpha_n \in B_n\); this would define the pair \((\alpha_n, \delta_n)\). It will be shown later that the pair \((\alpha_n, \delta_n)\) satisfies the properties \((P_1)\) and \((P_2)\). Suppose that our above claim is false. Two cases arise:

Case I. \(S_n\) is not bounded above.

Case II. \(S_n\) is bounded above but has no maximum element.

We first consider Case I. In this case for any natural number \(i\), we can choose \(\beta_i \in B_n\) such that \(\overline{v}(t - \beta_i) \geq i\). So \(t = \lim \beta_i\) must belong to \(\overline{K}\) by virtue of Theorem 5.2.1, contrary to the hypothesis. This contradiction disposes of Case I.

We now consider Case II. Recall that \(\delta_n\) is the supremum of the set \(S_n\) defined by (5.28). Choose a sequence \(\{\beta_i\}\) of elements of \(B_n\) such that \(\overline{v}(t - \beta_i) < \overline{v}(t - \beta_{i+1})\) for all \(i\) and \(\lim_{i \to \infty} \overline{v}(t - \beta_i) = \delta_n\). Since \(\overline{K}\) is dense in \(\overline{R}\), there exists an element \(\alpha \in \overline{K}\) such that \(\overline{v}(t - \alpha) \geq \delta_n\). Let \(\eta\) be an element of \(\overline{K}\) of smallest degree satisfying \(\overline{v}(t - \eta) \geq \delta_n\). Note that \(\deg \eta > h\) by virtue of the assumption that \(\delta_n \not\in S_n\). We
shall obtain the desired contradiction by showing that $K(\eta)/K$ is not a defectless extension. This will be accomplished by proving that there exists a member β_j of the sequence $\{\beta_i\}$ such that

$$v(K(\eta)) = v(K(\beta_j)), \quad R(K(\eta)) = R(K(\beta_j)).$$

(5.29)

As $\deg \eta > h = \deg \beta_j$, (5.29) quickly yields that the extension $K(\eta)/K$ is not defectless, which is contrary to the hypothesis. This contradiction proves that Case II also does not arise, thereby proving our claim that S_n has a maximum element.

We now prove (5.29). By virtue of Lemma 5.4.7, (5.29) is immediately proved once it is shown that for each $i > 1$, we have

$$v(\eta - \beta_i) = v(t - \beta_i) > \delta_K(\beta_i)$$

(5.30)

and

$$\delta_n > \delta_K(\eta).$$

(5.31)

We now verify (5.30). For any $\gamma \in \overline{K}$ with $\deg \gamma < h$, by virtue of the choice of h and the definition of B_n given by (5.27), we have

$$v(t - \gamma) \leq \delta_{n-1}, \quad v(\beta_i - t) > \delta_{n-1}$$

for all $i > 1$; consequently

$$v(\beta_i - \gamma) = \min\{v(\beta_i - t), v(t - \gamma)\} = v(t - \gamma) \leq \delta_{n-1}.$$

Since the above inequality holds for all $\gamma \in \overline{K}$ with $\deg \gamma < h$, we conclude that

$$\delta_K(\beta_i) \leq \delta_{n-1}, \quad i \geq 1.$$

(5.32)

Recall that by choice of η, $v(\eta - t) \geq \delta_n$. Since $\delta_{n-1} < v(t - \beta_i) < \delta_n$ for each i, it
now follows from the strong triangle law and (5.32) that
\[\bar{v}(\eta - \beta_i) = \bar{v}(t - \beta_i) > \delta_{n-1} \geq \delta_K(\beta_i) \]
which proves (5.30).

As regards (5.31), note that for any \(\alpha \in \overline{K} \) with \(\deg \alpha < \deg \eta \), we have \(\bar{v}(t - \alpha) < \delta_n \) which gives
\[\bar{v}(\eta - \alpha) = \min \{ \bar{v}(\eta - t), \bar{v}(t - \alpha) \} = \bar{v}(t - \alpha) < \delta_n. \]

Recall that every simple algebraic extension of \((K, v)\) is defectless. Consequently by virtue of [Ag-Khl, Theorem 1.1] and the above inequality, we have
\[\delta_K(\eta) = \max \{ \bar{v}(\eta - \alpha) \mid \alpha \in \overline{K}, \ \deg \alpha < \deg \eta \} < \delta_n \]
which proves (5.31). This completes the proof of our claim that \(S_n \) contains its supremum \(\delta_n \) which can be written as \(v(t - \alpha_n) \) with \(\alpha_n \) in \(B_n \).

Thus we have inductively proved the existence of pairs \((\alpha_n, \delta_n)\) with \(\alpha_n \) belonging to \(B_n \) (given by (5.27)) such that \(\bar{v}(t - \alpha_n) = \delta_n \). The choice of \(\alpha_0, \alpha_1, \ldots, \alpha_n \) shows that
\[\max \{ \bar{v}(t - \beta) \mid \beta \in \overline{K}, \ \deg \beta \leq \deg \alpha_n \} = \delta_n \quad (5.33) \]
and
\[\max \{ \bar{v}(t - \beta) \mid \beta \in \overline{K}, \ \deg \beta < \deg \alpha_n \} = \delta_{n-1} \quad (5.34) \]
and thus we have constructed a sequence \((\alpha_i, \delta_i)\) in \(\overline{K} \times \mathbb{R} \) satisfying properties \((P_1)\) and \((P_2)\).

The sequence \(\{\alpha_n\} \) will be an inverted distinguished sequence with limit \(t \) once we prove the following statements (a) and (b).

(a) \((\alpha_n, \alpha_{n-1})\) is a distinguished pair;
(b) \(\bar{v}(\alpha_n - \alpha_{n-1}) = \delta_{n-1} \to \infty \) as \(n \to \infty \).
We first verify (b). Since \(v(t - \alpha_n) = \delta_n > \delta_{n-1} = v(t - \alpha_{n-1}) \), we have
\[
\bar{v}(\alpha_n - \alpha_{n-1}) = \min\{\bar{v}(\alpha_n - t), \bar{v}(t - \alpha_{n-1})\} = \delta_{n-1}.
\]
To show that \(\lim_{n \to \infty} \delta_n = \infty \), we prove that if \(M \) is any given positive real number, then there exists an integer \(j \) such that \(\delta_j \geq M \). As \(\overline{K} \) is dense in \(\overline{K}^c \), we can choose \(\beta \in \overline{K} \) such that \(\bar{v}(t - \beta) \geq M \). Since \{deg \(\alpha_i \)\} is a strictly increasing sequence, we can choose \(j \) such that \(\deg \beta \leq \deg \alpha_j \). It follows from (5.33) that \(\delta_j \geq \bar{v}(t - \beta) \geq M \) as desired.

To prove (a), note that if \(\gamma \in \overline{K} \) is such that \(\deg \gamma < \deg \alpha_n \), then by virtue of (5.34), we have \(\bar{v}(t - \gamma) \leq \delta_{n-1} \). Therefore
\[
\bar{v}(\alpha_n - \gamma) = \min\{\bar{v}(\alpha_n - t), \bar{v}(t - \gamma)\} = \bar{v}(t - \gamma) \leq \delta_{n-1}.
\]
(5.35)

If \(\gamma \in \overline{K} \) is such that \(\deg \gamma < \deg \alpha_{n-1} \), then (5.34) implies that
\[
\bar{v}(\alpha_n - \gamma) = \min\{\bar{v}(\alpha_n - t), \bar{v}(t - \gamma)\} = \bar{v}(t - \gamma) < \delta_{n-1}.
\]
(5.36)

Assertion (a) quickly follows from (5.35), (5.36) and the above assertion (b). This completes the proof of the theorem.

5.6 Proof of Corollary 5.2.3

Set \(\alpha_0 = 1, \alpha_n = \pi^{s-1/p} + \pi^{s-1/p^2} + ... + \pi^{ns-1/p^n} \). In view of Theorem 5.2.2, it is enough to prove that the sequence \{\alpha_n\} is an inverted distinguished sequence with respect to \(v \). We establish this by showing that \([K(\alpha_n) : K] = p^n\) for all \(n \geq 1 \),
\[
\delta_{K}(\alpha_n) = \bar{v}(\alpha_n - \alpha_{n-1}) = ns - \frac{1}{p^n}
\]
(5.37)
and that \(\alpha_{n-1} \) belonging to \(\overline{K} \) is of least degree which satisfies (5.37).

Note that \(K(\alpha_n) \subseteq K(\pi^{1/p^n}) \). So \([K(\alpha_n) : K]\) is a divisor of \(p^n \). As \(\text{char } K \neq p \), \(K(\alpha_n)/K \) is a separable extension. We first calculate Krasner's constant \(\omega_K(\alpha_n) \).
Let ζ_r, $r \geq 1$ denote a primitive p^r-th root of unity. Keeping in mind the hypothesis $\frac{v(p)}{p-1} \leq s$ and arguing exactly as in Example 5.4.1, we see that

$$v(1 - \zeta_r) \leq \frac{rv(p)}{p^r - p^{r-1}} \leq \frac{v(p)}{p-1} \leq s;$$

in fact $v(1 - \zeta_1) = \frac{v(p)}{p-1}$. Consequently for any automorphism σ of K/K, which does not fix π^{-1/p^r}, we have for $0 < r < r'$ with r, r' in \mathbb{Z} the inequality

$$v(\sigma(\pi^{rs} \pi^{-1/p^r}) - \pi^{rs} \pi^{-1/p^r'}) \leq rs - \frac{1}{p^r} + s \leq r's - \frac{1}{p^r'} < r's - \frac{1}{p^r'} \leq v(\sigma(\pi^{rs} \pi^{-1/p^r'}) - \pi^{rs} \pi^{-1/p^r'}).$$

It now follows that

$$\omega_K(\alpha_n) = v((1 - \zeta_1)\pi^{ns} \pi^{-1/p^n}) = \frac{v(p)}{p-1} + ns - \frac{1}{p^{n-1}} n \geq 1. \quad (5.38)$$

Applying formula (5.38) for $n = 1$ and keeping in mind the inequality $\frac{v(p)}{p-1} \leq s$, we obtain

$$\omega_K(\alpha_{n-1}) = \frac{v(p)}{p-1} + (n-1)s - \frac{1}{p^{n-1}} < ns - \frac{1}{p^n} = v(\alpha_n - \alpha_{n-1}).$$

Since each α_i is separable over K, the above inequality, together with Krasner’s Lemma implies that $K(\alpha_{n-1}) \subseteq K(\alpha_n)$. This proves that $K(\alpha_n) = K(\pi^{1/p^n})$ is an extension of degree p^n of K. Since $v(\alpha_n - \alpha_{n-1}) = ns - \frac{1}{p^n}$, and $\deg \alpha_{n-1} < \deg \alpha_n$, (5.37) is proved as soon as we show that whenever $\beta \in K$ is such that

$$v(\alpha_n - \beta) > ns - \frac{1}{p^n} \quad (5.39)$$
then $\deg \beta \geq p^n$. Rewriting (5.39) as

$$\tilde{v}(\alpha_{n-1} + \pi^n \pi^{-1/p^n} - \beta) > n s - \frac{1}{p^n}$$

and using strong triangle law, we have

$$\tilde{v}(\alpha_{n-1} - \beta) = n s - \frac{1}{p^n}.$$ (5.40)

Using formula (5.38) for $n - 1$, we conclude from (5.40) that

$$\tilde{v}(\alpha_{n-1} - \beta) > \omega_K(\alpha_{n-1}).$$

The above inequality, in view of Krasner's Lemma, shows that $K(\alpha_{n-1}) \subseteq K(\beta)$. Therefore $\alpha_{n-1} - \beta \in K(\beta)$. As the value group of v is \mathbb{Z}, it now follows from (5.40) that the index of ramification of $K(\beta)/K$ (with respect to v) is not less than p^n. So $\deg \beta \geq p^n$. This proves (5.37). Arguing exactly as in the concluding lines of Example 5.4.2, one can easily check that if $\beta \in \overline{K}$ is such that $\tilde{v}(\alpha_n - \beta) = \delta_K(\alpha_n)$, then $\deg \beta \geq \deg \alpha_{n-1}$. So (α_n, α_{n-1}) is a distinguished pair. This completes the proof of the corollary.