The study of uses of plants by the primitive aboriginal societies and the interrelationship of plant and its user gave birth to an Interdisciplinary science called “Ethnobotany”, a term first coined by Harshberger (1896). This recently born multidisciplinary science of Ethnobotany has experienced a mushrooming growth the world over, in a short time of few decades. The scientists have paid much attention towards the utilization of wild plants by the indigenous people of different area in India as well as abroad.
Ancient Indian and world literature in medicine suggests that primitive people used several kinds of medicinal plants for combating diseases. Plants like *Rauwolfia serpentine*, *Papaver somniferum* and *Cinhona officinalis* have long been used to treat disease of body and mind. Some knowledge of ancient Indian medicine and medicinal herbs has been handed down through generation and has survived among the ethnic communications of India. Also literature indicates that plants were the source for food, medicine, shelter and clothing for aboriginal societies. *(Bodding, 1925)* stated that plants were the sources of food, shelter and clothing for aboriginal societies.

The ethnobotanical studies are not confined to Indian sub-continent alone, but it interesting that today, the major centers of modern ethnobotanical studies are in United States of America. The foremost center is the Botanical Museum of Harvard University in Massachusets. Here workers like Schultes, Wasson, Altschul, Timothy Plowman, Wade Davis engaged themselves on researches on various fields of Ethnobotany.

Richard Evans Schultes *(1941, 1970, 1979 and 1993)* conducted ethnobotanical explorations in Regions of Oklahoma, Oaxaea, Mexico, Amaxon (continuous stay from 1943-1953), etc. and worked on hallucinogens, medicinal and toxic plants. In 1930, Melvin R. Gilmore founded the first ethnobotanical laboratory in the worked at the museum of Anthropology, University of Michigan. The primary purpose for this laboratory was to identify plant remains from archaeological sites. In 1931, Volney H. Jones joined this laboratory and worked under Dr. Gilmore with the archaeological plant identification and the Ethnobotany with living people, in the great lakes on the Hopi Mesas *(Shah, *loc. Cit.*).*

Much strides in ethnobotanical pursuits have not been made in Europe. *Faulks (1958)* has written about the subject and has discussed the ways of field inquiry in detail. *Halback (1960)* described the odysseys and folklores about food and medicinal plants.

Bally (1937) has described native medicinal and poisonous plants of East Africa. Ethnomedicinal uses by Anguta tribe of Nigeria have been worked
out by Quimby and Persinos (1964) Osborn (1968) has described medicinal and other uses of plants in Egypt. The utilization of mushrooms by the Yoruba tribe of Nigeria has been highlighted by Oso (1975), Imperato (1977) and Adesina (1982) carried out ethnophytomedicinal studies in Africa. Wilson and Mariam (1979), Mc Clure (1982) and Tignokpa et al., (1986) are some other noteworthy worker engaged in ethnobotanical studies in various parts of Africa. Ethnobotanical studies include the work carried out by Ayensu and Coursey on Gunies yams in West Africa: indigenous trees and shrubs used by local fishermen on the East African coastal fishermen (Weiss. 1973, 1979), Johnson and Johnson (1976) have described economic plants in a rural Nigerian market; Morgan (1981) while dealing with the Ethnobotany of Turkana, has written about the use of plants by Pastoral people and their livestock in Kenya. Traditional preparations and use of cassava in Nigeria have been discussed by Etejere and Bhat (1985). Ethnobotany of an unexplored crop, *Icacina oliviformis* of Africa has been investigated by Fay (1987).

Galt and Galt (1978) discussed about the knowledge of wild plants of poor peasants in Italy and emphasized their importance in cultural ecological sense Capasso et al. (1982) highlighted the practice of traditional phytotherapy. The remnants of which can still be witnessed in Lucania, Italy, Kit et al. (1986) enlisted antidiabetic plants from U.S.S.R. and adjoining areas.

Ethnobotanical studies in Australia and its adjacent Pacific Archipelago are rather recent, Stopp (1963) and Johannes (1975) carried out Ethnomedicinal explorations of Mt. Hagen people in New Guinea and Nikematigi of the Eastern Highlands of New Guinea respectively. In the studies of Hyndman (1984) sixty-six species of *Pandanus* have been enlisted with their folklores from Papua New Guinea. Parham (1943) and Weiner (1970) have explored Ethnomedicinal uses of Fiji Native Plants. According to O’Connel et al. (1983) traditional medicines and narcotics from native plants are used with the help of modern methods.
For ethno-agriculture, the group of Jacques Barran at National Museum of Natural History at Paris is well known. This school is engaged in origin of cultivated plants and linguistics in south East Asia (Barrau, 1973).

In US, Richard Gordon Wasson is well known for his ethnomycological work mainly on the divine mushroom, *Amanita muscaria*, which he claimed to be the plant of immortality, the ‘Soma’ (Wasson, 1971), which has been identified to be *Ephedra* by Mahdi Hasan (1963). Altschul (1957, 1967, 1970a, 1970b) searched about 2,50,000 botanical specimens of Gray Herbarium, out of which he selected 5000 species for compiling ‘Drug and Food from little known plants- Notes in Harvard University Herbaria.’ In this work she took the help of two pharmacologists, who deciphered the notations of the herbarium sheets into modern pharmacological terms. Davis, (1983 a, b, c, d) worked on general Ethnobotany, group Ethnobotany, Ethnomedicine and made Ethnobotanical observations from Cabecas and Guaymi settlements in Central America. G. Mayer of U.S. National Arboretum, Washington, (1980) worked on the paleoethnobotanical.

In Asia apart from Dr. S.K. Jain, who initiated and still continuing ethnobotanical studies, after pioneering work of Dr. Janaki Ammal (loc. Cit.) a number of workers have carried out ethnobotanical studies in various parts of India and other Asian countries. They are Boding (1925, 1927), Vidal (1959, 1960, 1961 a, b, 1962, 1971), Conklin (1967). Bale and Danin (1981) are of the opinion that there is no plant of the desert that was not useful to the Bedouin shepherds, even the poisonous plants used with cleverness, e.g. Himalayan hirsute, a known poisonous plant was supposed to be a useless plant, but the shepherd use the moist roots of this species for partridge trap. Banerjee (1955) has carried out ethnobotanical work in Nepal. The other workers are Toffin and Wiart (1985) and Manandhar (1985, 1986). Anderson (1986a, b) Ethnobotany of hill tribes of Northern Thailand. Utilization of Ratan by a Semal community of West Malaysia has been described by Ave (1988). The Ainu are aboriginal people of Japan but lost their traditions due to the impact of modernization, though Mistuhashi
(1976) treats the medicinal plants valid on the basis of literature. Keji (1982) described the cardiac therapeutics by traditional Chinese medicine. Defni et. al. (1984) reported various plants from the herbal healers of country folk in Israel. Anderson (1986 a, b) studied the ethnobotany of Akha and Lahu tribes of Thailand. Abul Fatih (1987) has explored the medicinal plants of South-Western Saudi arabia. Shinwari et al.; (2002) studied the current status of medicinal plants of Bar and Shinaki Valleys, Northern Area. They found that 22% of the plants (the larger percentage among various uses) were used by the locals for gastro-intestinal troubles, followed by 11% of the medicinal plants for bronchial and pulmonary ailments. They suggested Carum bulbocastanum (zeera) and Ephedra geradiana for in vitro cultivation to obtain quick benefits and Hippophae rhamnoides to benefit the locals, as well as being a useful export from the longer-term point of view.

Ahmad and Ismail (2003) reported that 31 medicinal and aromatic plant species were cultivated in Swat at three different sites. Preliminary results shows that Ginkgo biloba, Crocus sativus, Colchicum luteum, Matricaria chamomilla, Viola adorata, Aconitum violaceum, Aconiturn heterophyllum, Podophyllum hexandrum, Valeriana jatamansi and Bistorta amplexicaulis can be grown successfully as minor crops on marginal fields. Hamayun (2003) documented ethnobotanical knowledge of shrubs and trees of District Buner as the area has diverse flora and high ethnobotanical potential. It was found that: 94 different plant species are used for medicinal, timber, fuel wood, fodder, ornamental, agricultural tools, thatching, fencing, naming (folk lore) and fruit yielding purposes. Bulk of plant species show multiple uses like Juglans regia wood is used for making furniture, gun woody parts, carving and as fuel. Root bark (Dandasa) is used for cleaning and sparkling teeth. Leaves are used by womenfolk for coloring lips (make-up. Viegi et al. (2003) reported Folk veterinary phototherapy in Italy collected from ethno botanical scientific literature of the second half of the 20th Century. Lewis (2000) conducted a review of Pharmaceutical discoveries
based on ethnomedicinal plants from 1985 to 2000 and beyond. **Ahmed (2003)** studied the medicinal plant used by Kadazandusun communities around Crocker range and reported at 50 plants species used by the Kadazandusun communities living around the crocker range sabah, Malaysia is presented here.

Perant et al. (2004) described the Monday, October 25,2004 Natural Remedies and Nutraceuticals used in Ethnoveterinary practices in inland southern Italy. **Ozgen et al. (2004)** conducted ethnobotanical studies in the villages of the district of Ilica (Province Erzurum), Turkey and reported 60 plat tax used ethnobotanically. **Ozgokce Ozcelik et al. (2004)** studied ethnobotanical aspects of some taxa in east Anatolia, Turkey the study provided information about 71 useful plants grown in the region, 20 of which are reported for the first time. **Ogunkunle and oladele (2004)** conducted Ethnobotanical study of fuel wood and timber wood consumption and replenishment in ogbomoso. Oyo state, Nigeria and showed that 76% of households depend on fuel wood for cooking. **Richman (2004)** discussed the subsistence strategies of an indigenous minority in the Philippines: non wood forest product use by the tagbanua of Narra, Palawan. **Fennel et al. (2004)** assessed African medicinal plants for efficacy and safety: pharmacological screening and toxicology. **Seziket et al. (2004)** studied Toshkent, Djizzax and Samarqant province of Uzbekistan. Altogether 177 folk remedies were recorded in the surveyed area. Among these folk remedies, 162 remedies were obtained from 79 different kinds of plant species that belong to 30 different families whereas,15 animal originated remedies that belong to 8 different animals are listed, which included their vernacular and scientific names, indications and recipes for preparations. **Berabour et al. (2004)** screened selected indigenous plants of Lebanon for antimicrobial activity and reported 27 indigenous wild plant species that have been commonly used in Lebanese folk medicine. **Hanlidou et al. (2004)** surveyed the herbal market of Thessaloniki (N Greece) and its relation to the ethnobotanical tradition. **Beeti (2004)** conducted an ethnobotanical study of medicinal plants among the baka pygmies in the Dia biosphere reserve,
Cameroon. The study reported 102 medicinal plants from 37 had holds. An ethno pharmacological survey of plants used for wound healing in Dogonland, Mali, West Africa was conducted by Inngjerdingen et al. (2004). Novais et al. (2004) working with 72 local people data on medicinal uses of 156 taxa. Belonging to 56 botanical families, were obtained and presented of which 214 corresponding to 81 taxa were previously unreported. Willcox and Bodeker (2004) conducted the clinical review of traditional herbal medicines for malaria. Shahleyand Rasa (2004) assessed the and prepared an ethnobotanical inventory in eastern amazonia’s logging frontier. Forty three medicinal plants in the ethnoveterinary practices of Borana pastoralists, southern Ethiopia were reported by Sori et al. (2004).

Pieroni et al. (2005) carried out a survey on traditional phytotherapy and trans-cultural pharmacy among Turkish migrants have in Cologne, Germany which recorded 79 botanical taxa and 115 plant-based preparations, encompassing 167 folk phytotherapeutical uses as well as a few other biological animal and mineral derived remedies. One fourth of the recorded remedies were represented by food medicines. Pieroni et al. (2005) studies traditional phytotherapy of the Albanians of lepushe, northern Albanian Alps and reported 70 botanical taxa and 160 preparations, mainly derived from plants. Pharmaceutical ethnobotany in the region of Turkmen Sahra, north of Iran. Abdolbaset (2005) studied the totally 136 totally 136 species form 51 families were documented from which 120 species used as medicinal and 84 species mentioned by three or more informants. Use of plant resources in a seasonal dry forest (Northeastern Brazil) was surveyed by Albuquerque et al. (2005). Yesilada (2005) reviewed the past and future contributions to traditional medicine in the health care system of the Middle-East. Mohammad (2005) conducted a detailed study on the Ethnoveterinary practices of owners of pneumatic-cart pulling camels in Faisalabad city, Pakistan. Sixty plants used to treat epilepsy by Tanzanian traditional healers were reported by Moshi et al. (2005). Where by 60 plants that are commonly used were mentioned. By Gupta et al. (2005) Ethnomedicinal uses of 108 medicinal plant species, belonging to 52 families, 89 genera used
by the Teribe Amerindians of Bocas del Toro province in Panama, along with their socio-cultural practices are reported. An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia was conducted by Macia et al. (2005). Guerrera et al. (2005) carried out a study concerning ethnomedicine in the Acquapendents district (Viterbo, Latium, central Italy), as an area so far less frequently studied from the perspective of plant folk traditions. The study described 96 plant entities, belonging to 45 families, of which 64 are employed in human medicine, 15 in veterinary medicine, 22 in the feeding of domestic animals, 5 as antiparasitics and 5 for other uses. Bako et al. (2005) analyzed the ethnomedicinal and phytochemical profile of some Savanna plant species in Nigeria. The plant species evaluated included three members from legumes and Liliaceae and one each of the Annonaceae, Burseraceae and Solanaceae. Their acclaimed uses in traditional medicine are as varied as their taxonomic distribution. Edwards et al. (2005) contributed to the understanding at methodological and epistemological problems for field based ethnopharmacologists. Plant biodiversity and ethnobotany of Borana pastoralists in Southern Oromia, Ethiopia was surveyed by Dalle et al. (2005). Total of 327 plant species distributed among 197 genera and 69 families are documented doing the study.

Pesek et al. (2006) conducted a rapid ethnobotanical survey of the Maya mountains range in southern Belize, central America and fifty three ethnobotanically used species were uncovered, collected and analysed. Leonti et al. (2006) conducted a comparative analysis of wild gathered food plants in the European Mediterranean. Deela et al. (2006) presented an ethnobotanical survey of wild edible plants of Paphos and Larnaca countryside of Cyprus and recorded 73 plant species. Cavander (2006) surveyed the folk medical uses of plant foods in southern Appalachia, United States and analysis of information obtained from interviews with 660 older native inhabitants of the southern Appalachian region in the United States indicates that plant foods, especially cultivars and materials processed from them and some wild crafted plant foods as well constituted the bulk of the
folk material in the 1920s and 1930s. **Libman (2006)** conducted a field survey in the district of Pakistan, Bolikhamsai Province in the Lao people’s democratic Republic (Lao P.D.R) which indicated that 55 species of plants, belonging to 49 genera in 31 families of vascular plants, are used in day to day medical therapy. Lao names along with uses and preparations for remedies are given. **Tardio et al. (2006)** presented on ethnobotanical review of wild edible plants in Spain and enlisted 419 plant species belonging to 67 families. **Weckerle et al. (2006)** documented the plant knowledge concerning wild collected species and analyzed food, medicine and ritual uses. Overall, sues collection sites and sue frequencies of 136 plant species were documented. **Estomba et al. (2006)** showed that the Currumhinca dwellers cited 89 plant species for medicinal purpose both of native and exotic origin. They know about 47 native plants of which they use 40 and they know of 42 exotic medicinal plants of which they use 34. By **Runyora et al. (2006)** Coast, Dares Salaam, Morogoro and Tanga regions of Tanzania has resulted in the identification of 36 plants species belonging to 21 plant families that are used traditionally for the treatment of Candida infections. **Weckerle et al. (2006)** documented the plant knowledge concerning wild collected species, analysed food, medicine, and ritual uses. Overall, uses, collection sites, and use frequencies of 136 plant species were documented. **Njorge et al. (2006)** surveyed the utilization of traditional herbal preparations in managing cattle ailments in Central Kenya with the aim of providing a comprehensive ethnobotanical profile and the most important plant species that may warrant scientific validation for efficacy and commercial utilization. A total of 40 plant species in 26 families were found to be useful in traditional management of various cattle ailments in this region. **Tapsoba and Deschamps (2006)** investigated the use of medicinal plants for the treatment of oral diseases in Burkina Faso. The study reported sixty-two relevant species belonging to 29 families. **Kim et al. (2006)** studied medicinal efficacy of 61 plants utilised as temple food in traditional Korean Buddhism. **Balemie and Kebebeu (2006)** conducted an Ethnobotanical study of wild edible plants in Derashe and Kucha Districts, South Ethiopia and
documented 66 plants belonging to 54 genera and 34 families. Through ethnobotanical survey of the “Sierra de Comechingones” made over a 26-year period (1979-2005), Goleniowski et al. (2006) indicated that 65 families and 149 different genera were used in traditional medicines. The use of these medicines was observed to be widespread and prevalent over orthodox medicine. Colvard et al. (2006) the medical ethnobotanicals for dental and oral medicine conditions and pathologies and reported over 100 plants or plant-based herbal preparations and commercial products, purchased from local botanical markets and pharmacies. Khan and Rashid conducted a study on the indigenous medicinal plants and healing practices in Chittagong Hill Tracts (Bangladesh). Bussmann and Sharon (2006) studied the traditional medicinal plant use in Northern Peru with a focus on tracking two thousand years of healing culture. 510 plant species used for medicinal purposes were collected, identified and their vernacular names, traditional uses and applications recorded under this study. Ethnopharmacological survey of plants used for the treatment of schistosomiasis in Niono District of Mali was conducted by Bahet et al. (2006). Hammiche and Maiza (2006) studied traditional medicine in Central Sahara and Pharmacopoeia of Tassili N’ ajjer and reported 80 wild indigenous medicinal plants have been identified and are currently used by the local population for various illnesses.

Pieroni et al. (2007) studied medicinal perceptions of vegetables traditional consumed by south-asian migrants living in bradford, northern England. Farfan et al. (2007) studied mazahua ethnobotany and subsistence in the monarch butterfly biosphere reserve, Mexico. A total of 213 useful plant species and 31 species of edible mushrooms were recorder. Baranga (2007) made observations on resource use in mabira foresh reserve, Uganda. An ethnobotanical survey on traditional treatment of malaria was carried out by Koduru et al. (2007) in mbarara district, western Uganda, a malaria-endemic area. Eliana (2007) described 57 plant species of restricted use (abortive, contraceptive, contraindicated) for pregnancy, prescribed in lesser doses for among three cultures in Brazil (caboclos-river dwellers, inhabitants of the amazon forest; the quilombolas, from the
pantanal wetlands; the Kraho Indians, living in the cerrado savannahs). **Njoroge & bussmann (2007)** ethnotherapeutic management of skin diseases among the kikuyus of Central Kenya. **Yineger et al. (2007)** surveyed ethnoveterinary medicinal plant at bale mountains national park, ethiopia and seventy four veterinary medicinal plant species that were distributed among 64 genera and 37 families were recorded. **Wet and wyk (2007)** conducted an ethnobotanical survey of Southern African menispermaceae focusing specifically on the seven genera and 13 species of this family indigenous to South Africa has yielded 64 valuable anecdotes, of which 38 are new records. **Okella and Segawa (2007)** studied medicinal plants used by communities of Ngai subcounty, Apac district, Northern Uganda. **Ibrahim et al. (2007)** surveyed ethno-medicinal plants and methods used by Gwandara tribe or sabo use in Niger State, Nigeria, to treat mental illness. **Dickel et al. (2007)** studied plants popularly used for loosing weight purposes in Porto Alegre, South Brazil. **Schmidt et al. (2007)** studied the role of saffron in phytotherapy and pharmacology. **Rigat et al. (2007)** studied pharmaceutical ethnobotany in the high river Ter valley (Purenees, Catalonia, Iberian Peninsula). **Abubakar et al. (2007)** discussed on the perception and practice of traditional medicine in the treatment of cancers and inflammations by the hausa and fulani tribes of northern nigeria. **Giday et al. (2007)** documented 76 medicinal plants belonging to 48 families of which 50 species were reported by the amharas, 25 by the shinashas and 20 by the agew-awis. **Mugisha and origa (2007)** discussed medicinal plants used to induce labour during childbirth in Western Uganda. Medicinal and poisonous properties of 121 plants species belonging to 96 genera and 45 families were recorded by **Agra et al. (2007)**. Of these, 119 species belonging 44 families, representing about 98% of the total are used for medicinal purposes, and five species are considered as poisonous. **Passalacqua et al. (2007)** assessed the contribution to the knowledge of the folk plant medicine in calabria region (Southern Italy) and recorded the use of 104 taxa distributed into 42 families are. **Arenas and scarpa (2007)** surveyed the wild edible plants of the chorote Indians, Gran Chaco,
Argentina. The chorote people use 57 plant species as a source of food, which they consume in 118 different ways. Ethnobotanical information of medicinal plants used for treatment of cancer in the eastern cape province, South Africa was analysed by Koduru et al. (2007). Lucena et al. (2007) surveyed the useful plants of the semi-arid northeastern region of Brazil. Kultur (2007) studied the medicinal plants used in Kirklareli province (Turkey). Al-qura’n (2007) studied the ethnoBotany of folk medicinal aquatic plants in Jordan. Jaric et al. (2007) carried out ethnobotanical survey on the territory of the highest mountain in central Serbia, Kopaonik, which is characterized by great plant diversity. In total, 83 wild species from 41 families and 96 preparations for use in human therapy were recorded. Tene et al. (2007) conducted an ethnobotanical survey of medicinal plans used in loja and zamora-chinchipe, ecuador. The present study reports a total of 275 plant species, having 68 different therapeutical uses.

Dawn tung au et al. (2008) studied medicinal plants used by hakka in Guangdong, china. The collected data covered 94 species belonging to 77 genera in 40 families. Coe (2008) studied ethnobotany of the Rama of Southeastern Nicaragua and comparisons with Miskitu plant lore. A total of 249 plant species, in 190 genera and 78 families, were documented as useful. Yineger et al. (2008) assessed the ethnomedicinal plant knowledge and practice of the oromo ethnic group in southwestern ethiopia. Tabuti (2008) surveyed the herbal medicines used in the treatment of malaria in Budiope country, Uganda. Shtayeh et al. (2008) discussed the traditional knowledge of wild edible plants used in Palestine (North West Bank). The study recorded 100 wild edible plant species, seventy six of which were mentioned by three informants and above and were distributed across 70 genera and 26 families. An ethnobotanical study of medicinal plants used by the Nandi people in Kenya was conducted by Jeruto et al. (2008). An inventory of the ethnoveterinary practices for reproductive disorders in cattle and buffaloes, in Sargodha district of pakistan was made by Dilshad et al. (2008). The uses of 66 plant species were documented for the treatment of reproductive disorders in the two dairy species under the study. Lee et al. (2008)
conducted an Ethnobotanical survey of medicinal plants at periodic markets of Honghe Prefecture in Yunnan Province, SW China. It was found that 216 plant species are commonly used by local people for curing various diseases, of which 173 species (80.1%) are wild plants and 43 species (19.9%) are home garden plants.

Hashim and Kamali (2009,a) studied the ethnopharmacology of medicinal plants used in North Kordofan (Western Sudan) and recorded information of 48 taxa distributed into 26 families. Hashim and Kamali (2009,b) discussed the challenges and constraints of medicinal plants in East and Central Africa. Sampliner and Miller (2009) studied the ethnobotany of Horseradish and its relatives with a reference to the local uses and found a significance value of more than 8 points. Giday et al. (2009) assessed the medicinal plant knowledge of the Bench ethnic group of Ethiopia and recorded 35 Bench medicinal plants: 32 used against human ailments and three to treat both human and livestock ailments. The majority of Bench medicinal plants were herbs and leaf was the most frequently used part in the preparation of remedies. Bekalo et al. (2009) conducted an ethnobotanical study of medicinal plants used by local people in the lowlands of Konta Special Woreda, southern nations, nationalities and peoples regional State, Ethiopia. The study revealed a total of 120 species, grouped within 100 genera and 47 families that are used in traditional medical practices were identified and studied. The Fabaceae and Lamiaceae were the most commonly reported medicinal plants with 16 (13.3%) and 14 (12%) species, respectively. 25.4% of the total medicinal plants are collected from homegardens and the rest (74.6%) are collected from wild habitats. Of the total number of medicinal plants, 108 species (90%) were used to treat human ailments, 6 (5%) for livestock diseases and the remaining 6 (5%) were used to treat both human and livestock health problems. Cornara et al. (2009) surveyed the traditional uses of the plants in Eastern Rivera, Italy and a total of 120 botanical taxa were recorded. Ethnobotanical data included medicinal (40.4%), alimentary (46.5%), veterinary (4.6%), domestic and cosmetic (4.3%), magic and ritual (1.8%) and other uses (2.4%). Medicinal
plants are used to treat a wide range of diseases, mainly disorders of digestive system, skin, and genital–urinary and respiratory traits. The study of Parada et al. (2009) studied the ethnobotany of the Alt Emporda region reported data on 518 species. Of these, 335, belonging to 80 botanical families, were claimed as medicinal. This work is focused on human medicinal plant uses, which represent 98% of the pharmaceutical uses (3581 out of 3643 use reports). Around 800 medicinal uses, concerning 200 species, have not, or have very rarely been cited as medicinal; of these, 32 uses of 30 species have been reported by three or more independent informants.

Alencar et al. (2010). Discussed the inclusion and selection of medicinal plants in traditional pharmacopoeias with a special reference to the evidence in support of the diversification hypothesis. An ethnobotanical study with phytochemical analyses was undertaken by Neto et al. (2010) to examine the medicinal plants used by residents of a small rural community in northeastern Brazil. The study involved 101 people and used semistructured interviews. A total of 61 plants were selected, including 25 exotic and 36 native species. Meilby and Anders (2010). Explored associations between the returns from harvesting a commercial non-timber forest product and particular characteristics of harvesters and their strategies. Tabuti et al. (2010). Studied medicinal plants used by the traditional medicine practioners in the treatment of tuberculosis and related ailments in Uganda and reported 134 plant species belonging to 90 genera and 65 families. Svetaz et al. (2010) analysed the value of the ethnomedicinal information for the discovery of plants with antifungal properties among seven Latin American countries. This study reported the antifungal evaluation of 327 plant species (92 families and 251 genera) from seven Latin American countries which were selected on the basis of their reported ethnomedicinal uses and compared them with plants selected at random.

Joseph et al. (2010) studied the wound healing effect of flabellaria paniculata leaf extract. Abbasi et al. (2010) surveyed the ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal of North West Frontier Province pf
Pakistan and reported 66 plant species belonging to 45 families. Seventy-five medications for 15 skin diseases and cosmetics were documented. Among these Berberis lyceum, Berenia ciliata, Melia azedarach, Otostegia limbata, Phyla nodiflora, Prunus persica and Zingiber officinale constitutes major plants. Medley (2010) measured the composition, structure, and use of woody plants in 55 nested plots stratified across bushland, montane woodland, and evergreen forest at Mount Kasigu, Kenya. The study reported plant uses average highest in bushland below human settlements, show greatest variation in montane woodland, and are significantly lower in evergreen forest. Bussmann et al. (2010) investigated the plant mixtures used in traditional medicine in Northern Peru which, yielded a total of 974 herbal preparations used to treat 164 different afflictions. Psychosomatic disorders were, with almost 30% of all recipes applied, the most important afflictions treated. In most cases, healers used only one or two mixtures to treat an illness. However, up to 49 different preparations were used to treat the same disease. Quinlan (2010) studied the ethnomedicine and ethnobotany of fright, a Caribbean culture-bound psychiatric syndrome and reported Gossypium barbadense, Lippia micromera Schauer, and, Plectranthus amboinicus as the most common herbs used for the treatment. Simbo (2010) surveyed, identified and recorded 107 plants species from 54 plant families, 98 genera used for treating diseases in Babungo, Cameroon. The Asteraceae was the most represented plant family while herbs made up 57% of the total medicinal plants used. The leaf was the most commonly used plant part while concoction and decoction were the most common method of traditional drug preparation.

In India the traditional folk medicine has a long history and is very keep rooted. It was practiced much before the beginning to the Christian era and perhaps, in the “Pre-vedic” periods to which belong the Mohenjodaro and Harrappan civilization. More over the incoming races and the early foreign contacts with Tibet, China, Egypt, Arabia and Greece brought in many ideas, thoughts, beliefs and practices and helped in building up rich heritage of herbal folk medicine in India. The Dravidians and Aryans had good knowledge
about the medicinal herbs. They had Herbalists of high caliber. The epic Ramayana mention about the life reviving herbs found in the north of Himalyas which was used by the physician Sushena to revive Lakehamana after he was hit by an arrow and fell unconscious. The herbs was named “Sanjiwani” which was resurrection plant and has now been identified as *Selaginella brypoteris* by Dixit (1982).

In 1873 Colonel H. Dury produced the “Useful Plants of India” one of the oldest systematically arranged text about the economic aspects of Floral wealth of India. As early as in 1881 Basu compiled “Indian Medicinal Plants” which he revised with Kirtikar in 1935 in 4 volumes. Majumdar (1927), wrote “Vanaspati” plants and plant life as in Indian Treatise and Traditions. Biswas (1934) studied the concept of the disease among the primitive people. Kirtikar and Basu (1935) estimated about 604 plants species for the treatment of various ailments. The ethnography of anthropologists Grigson (1938) and Elwin (1947) mentions about the medical practices of the Maria Gond tribes of Bastar in Madhya Pradesh. Kehar (1948) during his survey reported that *Saccharum spontaneum* is used as famine ration.

Chopra *et. al.* (1956) made a very valuable contribution to the knowledge of Indian medicinal plants by publishing in “Glossary of Indian Medicinal Plants” describing medicinal plants and their chemical ingredients and uses. Chopra (1958) classified the Hindu periods of medicine into four categories viz., (1) The vedic period, (2) The period of original research, (3) The period of compilation tantras and siddhas and (4) The period of decay and compilation. At the end of third period of knowledge of Ayurvedic medicine spread all over the world. During that period western world particularly Greece and Rome took substantial material from India to enrich their medical knowledge. Bhargava (1959) during his ethnobotanical survey reported some unusual and interesting food plants of Kumaon Himalaya.

From 1960, Dr. S.K. Jain started intensive field studies among tribal of Central India (Jain 1963 a-d, 1964 and 1965 a-b). He impressed on the scientists of different disciplines and on the Government of India, the
urgency of recording ethnobotanical data, devised methodology for ethnobotany particularly in Indian context, stressed the need of organized field work among the tribal for comparative studies of ethnobotanical claims of different regions in the past and present published literature. He advocated recording of such uses from archaeological remains, notes on herbarium sheets and travelers’ records etc. (Jian 1964a, 1967). His observations of newer plant resources and intimate relationship of the tribal with their plant environment encouraged him to initiate similar work in eastern India (Jian and Borthakur (1980), Jain and Dam (1979), Jain and De (1964).)

The customs, habits and mode of living of aboriginal tribes of India in order to understand their medical practices were studied by Kutumbiah (1962). Roy and Rao (1962) noted that Mahua flowers are said to be the basic ingredient in preparation of liquors Roy and Rao (1962) observed that yam (Dioscorea sp.) and potatoes are reported to form the staple food of certain tribes in Kerela and Nilgiri hills. Sen Gupta (1962) found that the millet based less alcoholic beverages are said to be nutritious providing protein, minerals and vitamins.

Jain (1963) has recommended for extensive field work among the primitive folk healers of India as there people are becoming acculturated and loosing their knowledge and experience of medicinal plants. Many flowers, fruits or whole plants are themselves worshipped or considered sacred e.g. the sacred Basil (Ocimum sanctum), Pipal (Ficus bengalensis). Jain (1963) reported magical properties of some plants, e.g. placing a twig of Achyranthes aspera in hairdo of a woman can facilitate child birth;’ paste of flowers of Ageratum conyzoides on forehead means good luck and success. Jain (1963), Jain and Tarafder (1963) Use of plants in folk medicines is very prevalent in central India. Jain (1965a) reported more than hundred plants commonly used in medicine in the district of Bastar. Some plants are used singly, where as others are used in mixture. Similarly, certain plants were considered useful in only one disease whereas several had multiple uses.

Ethnobotany of any specific geographical region, which may have one or more distinct ethnic groups, e.g. on central India by Jain (1963, 1981),

Jain (1964) reported that in 60 wild plants used as food by the tribal of Bastar. Some eminent sociologist and Anthropologists while studying about the social and cultural life of the primitive societies of India, indirectly studied the use of medicinal plants by these people. Notable among them are Upadhaya’s “Indian Botanical Folklore” (1964), Dhar’s “Aspects of folklore: (1971) and Arya’s “Plant lore of west U.P.” (1965). Kutki (Picrorhiza kurroa) is being used by the herbal vendors as a drug of choice for the treatment of Jaundice and also for the problems related to digestion. The drug “Kutki” find its first mention in Artharveda and then in Charak and Sushruta Samhita as a valuable bitter tonic and laxative, activating liver and heart function. Chaturvedi and Singh (1965) found that the decoction of P.Kurroa have remarkable protective action against toxicity of liver.

Gupta et al. (1967) reported that Tinospora cordifolia stimulate indigenous “Insulin” secretion by the pancreas. That is why a herbal medicine cures a disease from root and not merely gives symptomatic relief as does the modern synthetic medicine. Agarwal and Saha (1968), Jain and Dam (1979) reported many unknown or little uses of plants from notes on old herbarium sheets in other herbaria of the country and of the world.

Bhowmik (1971) reported that the tribal who live in the plains or lower regions of hills, practice settled and also wet cultivation, depending on the irrigation sources available. Some tribes are reported to have a special liking for greens and consume them in larger quantities. Rao (1971) investigated that vegetables supplement many of the tribal diets and quite often tribal diet consists of cooked rice or millets and some boiled vegetables like brinjals, beens, gourds, pumpkin, onion, green chillies, mushrooms etc. Sharma (1971) suggested that pulses like horsegram, redgram and to a
lesser extent greengram are reported to be consumed in considerable quantities by some tribal. **Swaminathan et. al. (1971)** discovered variety of wild foods like wild tubers and flowers of *Madhuca longifolia*, mushroom, bamboo shoots, stones of wild mango, wild leafy vegetables, green leaves and flowers of *Hibiscus subdareffa* and pith of caryota palm are reported to be stored by sundrying. **Swaminathan et. al, (1971)** also observed that the vegetable consumption is reported to be not common with the Orange tribes of Andaman and Nicobar Islands.

Pingale (1973) reported various unusual foods like roots of various *Dioscorea* species, wild mushrooms, bamboo shoots, wild millets, wild rice which grow near paddy fields, a kind of leguminous seed *Mucuna pruriens* and *Cayota palm* pith etc. being consumed by the tribal of India. Nuts and oil seeds like sesame, castor and groundnut are reported to form the major cash crop of various tribes in and outside India. **Bhandari (1974)** in famine foods of Rajasthan desert, has listed some wild food plants, their use and preparations under the different categories such as foliage, seeds, fruits, flowers, buds, roots and tubers, stem bark under leaf pulp. **Rao and Satyanarayana (1974)** found that pulses are minor food item of most of the tribes in India. **Pratap (1975)** studied that tribal not only retained their separate ethnic and cultural identity from non-tribal population, but each of the tribal group conserved and nurtured its distinct socio-cultural and linguistic tradition.

Gore et al. (1977) reported that roots and tuber consumption is seasonal and their quantitative share in tribal dietaries is reported to be small. A survey of wild edible plants in Bazars of Meghalaya was recorded by **Jain et al. (1977)**. **Kurup (1977)** studied the great oesterogenic potentially of some herbs as uterine tonic and given some scientific credibility to the mode of herbal treatment given by these street healers which they achieved slowly on account of their experience and experimentation often on themselves since several generations. **Basham (1977)** in his article” The Practice of Medicine in Ancient and Medicinal India” discovers some important aspects of the medical practices of ancient India. He recalls that in those days there existed
both, the traditional healers conversant with healing herbs as well as the witch doctors and disease was thought to be caused by the curse of punishing God and evil spirits.

Singh and Arora (1978) gave a brief account of wild edible plants of India. Plants foods of western Rajasthan were reported by Saxena (1979). Jain (1979) in his “Glimpses of Indian Ethnobotany” recall the words of Professor S.S. Sopurunov of the U.S.S.R. Institute of Tropical Medicine – “Regular Physician in Developing Nations should team up with the Tribal Doctors to Combat diseases.” Hebral vendors use Amaltas (Cassia fistula) for the treatment of constipation and as an anti-anthelminitic. Babbar (1979), have showed Cassia fistula to be a weapon of great anti-viral activity inhabiting several kinds of viruses. It has interferon like activity in destroying the viruses. Dhak (Butea monosperma) is being used by Herbal vendors in several combinations both as an anthelmintic and as an antifertility drug. Modern investigation proved the contraceptive potentiality of the drug. Kurup (1979) wrote the “Handbook of Medicinal Plants” describing the distribution, parts used and the dose of herbal drugs administered with beautiful coloured photographs of important medicinal plants.

Bannerman (1980) and Baasher (1982) in their separate communications emphasized the role of WHO on the organization, promotion and development of researches into traditional medicine with mutual cooperation among the developing countries. According to them WHO fully recognizes the potential of traditional herbal medicines and the vital role played by the traditional healers in providing a cheaper easily accessible source of medicine to all sections of population especially in the rural backward areas in the developing countries. Sen Gupta (1980) reported that vegetable production is a part of the tribal living. Sood et al. (1980) studied on the chemical composition of some wild food sources, demonstrating their nutritional significance. Rao and Neogi, (1980) found that whenever possible; the tribal people supplement their income by raising poultry, weaving and gathering various forest products. Hockings (1980) presented an elaborate account of the indigenous medical system of the
Badagas of South India. *Tweary et al. (1980)* worked on the herbal medicine practiced by the tribal of Assam and Arunachal Pradesh and reported indigenous medicinal plants for the treatment of Insanity, Jaundice, Cancer, Rabies, Snake-bite, Bone-Fracture, Malaria and Abortions of Foetus etc.

Al-Ani, (1980), Sen Gupta (1980) and Joseph (1981) reported that butter made from the milk of cow, Yak and sheep milk, oil extracted from mustard, sesame, groundnut and mahua seeds are reported to be used in small quantities by some tribal. *Agarwal (1981)* noted that the identification of most of the plants referred in the ancient Indian epics like Ramayana and Mahabharata and in Bible has been established. *Jain (1981)* in his “Glimpses of Indian Ethnobotany” has explained that next to field studies, herbaria and musea play an important role in the ethnobotanical research. Finding of plant remains *Vishnu Mitre (1981)* reported that plants may have been either wild or cultivated, they can held in ascertaining the exact time of their domestication. These remains can also reveal certain information on new sources of medicines, food and fibers. *Joseph and Kharkongor (1981)* during ethnobotanical survey reported some wild food plants in Khasi and Jaintia hills. *Vartak and Mandavgane (1981)* worked on the Berhal medicine practiced by the tribes of Maharashtra for controlling High fever, Rheumatic pains, Jaundice etc. *Saxena and Vyas (1981)* studied the traditional methods of treatment of Lecuoderma and Leprosy by the tribal of Uttarpradesh. Seeds of *Psoralia corylifolia* with leaves of *Eclipta alba* are used combination to treat the diseases. A survey of sixty nine plants in the lives of the Todas, Kotas and Irulas of the Nilgiris was presented by *Abraham (1981)*.

Tewary et al. (1982) Studied the Folklore information for female sterility from Assam. Women folk use *Piper nigrum, Mimosa pudica, Hibiscus rosa-sinensis* for temporary birth control. *Plumbago zeylanica, Helitropium indicum,, Salamalia malabarica* are used for permanent sterilization. *Ricinus communis* and Cairica papaya seeds are used for abortion. *Kishore and Bhat (1982)* reported the use of *Achyranthes aspera* and *Datura metel* as
oral contraceptive by the tribes of Orissa. Maji and Sikdar (1982) have studied Taxonomic and systematic surveys on the wild plants of Midnapur district. Singh and Pandey (1982) reported certain plants used as religion and medico-religious beliefs in Rajasthan. Jaggi (1982) wrote a very authentic account called “Folk Medicine” in Vol. III of the History of Science, Technology and Medicine in India. It is a valuable work on ethnobotany. Jaggi recognize two type of Folk Medicine- (i) The “Tribal Medicine” practiced by the tribal in forests and hills and (ii) The “Village Medicine” practiced by the villagers in major parts of India. He discusses about the concept of disease among the folklore their tools of diagnosis and methods of treatment. Joshi (1982a) made preliminary study of Bhil tribe mentioning 80 species of ethnobotanical importance including 34 species in medicine. From 1971 to 1982 onward Shah et al. made some valuable contribution to the Herbal folk medicine. They studied about the folk practices of the tribal of Kumaon Hills of Himalayas and brought to light several medicinal plants used by the Traditional healers of this region.

Mishra and Billore (1983) studied on some ethno-botanical lore from Banswara district. Mohammad (1983) wrote “The Potential of Herbal medicine in modern medical therapy. He recognizes that folklore has played very important role in giving the information about valuable herbal drugs which has great potential in the modern medical therapy. He reasserts the herbal drugs have anti-bacterial, anti-viral, anti-diabetic and anti-cancerous properties and that different fractions of the plant extracts have different action. Shanmugasundaran and Sathpathy (1983) described the preparation of a Herbal drug called “Anna Pavala Sindooraman” to prevent Artherosclerosis based on the concept fo traditional medicine. The plants used were Vinca rosea, Acalypha indica, Lippia nodiflora, Lawsonia alba. Cynodon dactylon, flowers of Hibiscus rosa-sinensis and ripe fruits of Phyllanthes emblica.

Rao (1983) and Hemadari (1984) studied the folk claims from the tribal of Andhra Pradesh of the treatment of Leucorrhoea, Menorrhagia and Jaundice. The plants indicated of the Leucorrhoea and Menorrhagia are
Asparagus racemosus, Ficus bengalensis, Mimosa pudica, Hibicus rosa-sinesis and Phoenix sylvestris: while that for jaundice are Andrographis paniculata, Cassia tora, Tinospora cordifolia, Curcuma aungustifolia, Ricinus communis, Solanum nigrum, Ecipta alba, Lawsonia inermis etc.

An Ethnobotany particular utility groups of plants like food, medicine, hallucinogens & medicine specificity is also seen in publication e.g. plant in particular diseases like papers on ethnogynaecology by Tarafdar (1984) on ethnodermotology, by Khan and Changhatai (1982), on rheumatism by Hemadri (1981), on plants used against diarrhea and dysentery (Sahu, 1983) and as veterinary medicines (Pal, 1980) are of much significance in Indian ethnobotany research.

Molla and Roy (1985) studied the traditional treatment of Jaundice, Rheumatism, Hernia, Gastric Ulcer, Bronchitis and use of effective herbal contraceptive by the Rabha tribes of Bengal. Atique, et. al. (1985) reported about the use of leaves of Annona squamosa together with Piper nigrum for effective cure of diabetes by some U.P. tribal. Vishwanath Nair (1985, 1987) gave much emphasis on how a tribal community’s health is affected by the disturbances in the habitat and alien cultural contact. The study indicates that those tribal communities whose natural habitat remains
relatively undisturbed use more herbal medicine than those whose habitats are disturbed.

Besides giving a brief description of ethnomedicinal practices of the Kanikkars of Kerala, Radha Krishan (1986) also showed they know a large number of herbal medicaments for the treatment of various ailments. He studied the health and ethnomedicine of some tribes of Kerala. Guha (1986) presented a descriptive account of the folk medicine of the Boro tribe of Assam. He makes an analysis of the impact of modern medicine upon the traditional one. According to Dash (1986) the basic concept of illness among the Paraja of Orissa, is explained by magico-religious beliefs. However, besides the Magico-religious treatment of the diseases, the herbal therapy is also very much prevalent among them. According to Chakraborty (1986) the ethnomedicine takes period to cure the patients and there is also scarcity of medicinal herbs.

“Role of indigenous medicine in Primary Health-Care” by Ali (1987), “Diabetes and Herbal drugs” by Hussain (1987); Search for Antimalarial plant drugs in the tribal pockets of Orissa” by Aminuddin (1987) were important papers presented in seminar on Unani medicine at University of Toronto, Canada. Jain (1987) discussed that Shankpuship (Evolvulus elsinoides) is indicated as brain tonic to improve the memory the memory power by the herbal vendors. Recent researcher shows that the drug from the plant has psychedelic and psychelytic effects. In case study of the Asur, the Birgia and Kisan tribes of Bihar, Upadhyay (1987) showed how changes in their natural habitat due to deforestation brought adverse effect on their health. The tribal medicine men fail to cure the new diseases which occurred due to causes like pollution, change of diet and close association with the non-tribal.

Withania Somnifera is used very commonly in several ailments by the Herbal vendors. Recent researches shows great medicinal value of this plant. Chaudhary (1988) reported chemical compound withanolide D., Withaferin from the leaves of W. somnifera which have significant Anti-tumor activity in vivo against sarcoma-180 cells in mice. The root of this plant has been found anabolic and antibacterial properties. Khan et al.(1988)
have also confirmed anti-anthelmintic action of *Butea monosperma*. **Chakarborty (1988)** recently reported blood sugar lowering activity of “Gymnemic acid” found in the *Gymnema sylvestre* in an experiment on diabetic rats. **Dhawan (1988)**. In his paper entitled “Strategies for Biological Evaluation of Indian medicinal plants, he stressed on the scientific evaluation of those indigenous plants which were used in the traditional system of medicine in India to establish their due place in national health care programme. **Zuthshi (1988)** in their communication “New Utilization of some Indigenous Drugs” brings to the fore some entirely new activity of few indigenous herbs used in folk practices but hitherto unknown to modern medicine. In his “Indigenous Drugs-An appraisal on modern strategies” Strongly suggest for fresh studies on indigenous drugs on scientific basis if it has to regain its lost pride. **Chakrabotry (1988)** in his paper entitled “Indigenous drugs in the development of modern medicine,” gives scientific evidence of the hypoglycemic effects of *Gymnema sylvestre* in lowering the blood sugar ironically the herbs is frequently used by the Herbal vendors in the name of “Gurmar buti” to treat diabetes.

Tribhuwan (1989) has pointed out that the medical practitioners of the Thakur tribal in Maharashtra have special rites of collection, preparation and administration of herbs and potion drugs, which are very meaningful to them. The study of Indigenous beliefs and practices regarding health and disease in different cultures is of great significance in understanding human behavior. **Kurian and Tribhuwan (1990)** in their study of the medical or Traditional health practitioners of Sahyadri have pointed that over 90% of the deliveries among the Thakurs, Kathkaris and Mahadev Kalis tribes of Maharashtra take place at home.

Gangwar and Ramkrishnan, 1990; Maikhuri, 1991; Prasad and Bhatnagar, 1991 suggested that the wild plants play a significant role in the tribal economy and fulfill their needs for food, particularly during lean periods. **Singh, et al. (1990)** made ethnobotanical observations on some Gymnosperms of Garhwal Himalaya, **Uniyal and Joshi. (1991)** Cancer ke upchar mai paramparagat ausadhi and found five important anti-cancerous
herbs., Aswal (1992) reported less known medicinal uses of three plants from Kumaun Himalaya, Joshi et al. (1992) conducted a review of indigenous system of medicine with special reference to herbal drugs, Singh and Maheshwari (1993) conducted studies on phytotherapy for Diphtheria by the Bhoxas of Nainital District, Uttar Pradesh, India. Uniyal, and Joshi (1993) presented historical view of the basic principal of the identification of the controversial drugs problems and suggestions.

Maikhuri et al. (1997) described a case study from the Nanda Devi Biosphere Reserve, West Himalaya dealing with the medicinal plants cultivation and biosphere reserve management. Dhar, et al. (1997) studied the biota and resource use pattern of the natives within Askot Wild Life Sanctuary of Kumaun Himalaya. Singh and Rawat (1997) reported the traditional versus commercial use of wild medicinal plants of great Himalayan National Park. Jain and Rao. (1997) wrote "Hand Book of Field and Herbarium Methods" which is of high practical value for the students of
ethnobotany and taxonomy. **Joshi and Pande (1997)** conducted studies on the ethnobotany of Bhotia tribe of Kumaun Himalaya. **Maikhuri et al. (1998)** described the role of medicinal plants in the traditional health care system with reference to Nanda Devi biosphere reserve and reported many interesting aspects of the local people living in the park. **Pandey and Pande (1999)** studied the ethnobotanical aspects of Gymnospermic elements of Kumaun Himalaya.

Kumar and Praveen (2000) enumerated a total of 116 medicinal plants belonging to 99 genera and 52 families used as household remedies in traditional medicinal system and commercialized medicines in arid western Rajasthan. **Mukherjee et al. (2000)** studied 44 plants from ethnic tribes of Bankura district of West Bengal used for 23 common diseases along with ethnopharmacognostic preparation and dose. A survey of tribal of western Madhya Pradesh by **Samvastar and Diwanji (2000)** yielded 13 plants for the treatment of jaundice. **Anis et al. (2000)** carried out ethnobotanical studies on the Saharia communities of Gwalior forest division of Madhya Pradesh and reported 102 medicinal plant species used by the local tribal for a wide range of common ailments. The medicinal plants used in the treatment of skin diseases and related problems in north east India have been reviewed by **Begum and Nath (2000)**, of the 275 plant species examined, 224 were used in the treatment of specific human ailments such as allergies, worms, cuts, and wounds, inflammation leprosy, leucoderma, scabies, smallpox and sexually transmitted diseases. A disease wise preference for the use of ethnomedicine was reported by **Dam et al. (2000)** in the Thar desert of north western India. A survey on traditional medicines of Davangere district in Karnataka by **Maruthi et al. (2000)** revealed some interesting information about the use of plants to cure various cutaneous diseases like leprosy, eczema, scabies, ringworm, boils, sore eyes and healing up wounds etc. **Masilamani (2000)** enumerated the readily available local plants to annual the snake poison used by the Gounda tribes of Tamilnadu. Two species most often used and relied upon are **Aristolochia indica** and **Gymnema sylvestris.**

Natrajan et al. (2000) recorded 34 plant species use by local women in the

Bhandari and Chandrasekhar (2001) described 43 species of plants with different herbal methods for treating venomous snake bites in coastal Karnataka. Garg (2001) prescribed some plants which are very important ethnobotanical antidotes for snake bite. Rajan et al. (2001) provide a list of 24 flowering plants belonging to 23 genera in 16 families whose stem and stem bark are used by the tribal, Irulas and Puniyas of Nilgiri district of Tamilnadu with their local names, ethnomedicinal uses, dosage and mode of application. The traditional plant drugs of arid areas of Rajasthan having ethnomedicinal value and work on their scientific exploration have been reviewed by Tripathi et al. (2001). Medico ethnobotanical value of 83 plant species belonging to 76 genera from 45 families have been reported by Dutta and Dutta (2001) on some north east tribal ethnic communities settled in Barak valley, Assam, Borah et al. (2001) recorded ethnomedicinal uses of 25 plants used by the rural and traditional communities of Darrang district. Assam along with the details about the plants local name(s), plant part used, method of preparation of recipes, dose regimen and status of occurrence of the indigenous plant species. Chauhan (2001) presented ethnobotanical information on 650 species belonging to 416 genera, 87 families of Sikkim, Himalaya of which over 200 are medicinal plants. Jamir
Sarmah et al. (2001) studied the common medico herbs of Nagaland and felt the urgent need for conservation and protection of these valuable medicinal plants from the region. Singh and Prakash (2001) presented a preliminary account of 100 plant species used by the tribal people of Arunachal Pradesh along with uses and methods of application. Singh and Prakash (2001) presented a preliminary account of 100 plant species used by the tribal people of Arunachal Pradesh along with uses and methods of application. Singh and Prakash (2001) highlighted some of the important plant species of ethnomedicinal value used by the tribal healers of north east India for the treatment of diseases and disorders like arthritis, diarrhea, dysentery, jaundice, malarial fever skin diseases, venereal diseases etc. Sharma and Singh (2001) reported some less known herbal drugs by tribal of Dadra and Nagar Haveli, Union Territory.

Hebert *et al.* (2004). Studied the ethnomedicinal of Dharwas district in Karnataka, India with special reference to plants used in oral health care. The study. Revealed that 35 plants belonging to 26 families being used to treat different types of oral ailments like toothache, plaque and caries, pyorrhea and aphthae. Sixteen of these plants were new claims for the treatment of oral ailments not previously reported in the ethnomedicinal literature of India. Kala (2004) discussed in detail pastoralism, plant conservation and conflicts on proliferation of Himalayan knotweed in high altitude protected areas of the Western Himalaya, India. Sharma *et al.* (2004) made observations on the traditional phytotherapy among the inhabitants of Parvati valley in Western Himalaya, India. The study recorded first-hand information of about 50 plant species belonging to 45 genera and 28 families. Katewa *et al.* (2004) reported of ethnomedicinal plant species belonging to 38 families as a result of their study on folk herbal medicines form tribal area of Rajasthan, India. Seth and Sharma (2004) wrote a commentary on Medicinal plants in India. The Commentary revealed that there are about 45,000 plant species in India, with concentrated hotspots in the region of Eastern Himalayas, Western Ghats and Andaman & Nicobar Island.

Mahishi *et al.* (2005) in their study on medicinal plant wealth of local communities in some villages in Shimoga District of Karnataka, India revealed. Kala (2005) studied the ethnomedicinal botany of the Apatani in the Eastern Himalayan region of India and documented 158 medicinal plant species used by the Apatani group of villages. These medicinal plant species were distributed across 73 families and 124 genera. Asteraceae was the most dominant family (19 species, 11 genera) of medicinal plants, followed by Zingiberaceae, Solanaceae, Lamiacear and Araceae. Kala (2005) studied the indigenous uses, population density, and conservation of threatened medicinal plants in protected areas of the Indian Himalayas and reported 60 threatened medicinal plants. Jain *et al.* (2005) carried out studies on the medicinal plant diversity of Sitamata wildlife sanctuary, Rajasthan, India and reported 50 plants belonging to 40 families and 45 genera. Behera and
Misra (2005) reported 27 plant species belonging to 24 families used in the treatment of 17 diseases under the broad heading genito-urinary diseases by the Kandhas of Orissa. An ethnobotanical survey was carried out among the ethnic groups (Kani/Kanikaran) in Southern Western Ghats of India by Ayyanar and Ignacimuthu (2005). Murugkar and Subbulakshmi (2005) analysed the Nutritive values of wild edible fruits, berries, nuts, roots and species consumed by the Khasi tribes of India. The study revealed that Coix lachrymal, a nut, was rich in protein (13.3 g %), Zanthoxylum acanthopodium, a spice, rich in fat (20.9 g%), and Solanum indicum, a berry, rich in crude fiber (47.2 g %). Castanopsis indica, a nut, contained good amounts of calcium (1540mg%), Kaempfaria galanga, a root, considerable amounts of iron (69.91 mg%) and zinc (8.4 mg%) and Vangeria spinosa, a fruit, a good amount of zinc (23.0 mg%).

Ignacimuthu et al. (2006) while conducting the ethnobotanical investigations among tribes in Madurai District of Tamil Nadu (India) reported 60 ethnomedicinal plant species distributed in 32 families. Traditional uses of 54 plants species belonging to 26 families are described under this study. Uniyal et al. (2006) made observation on the traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. Uniyal et al. (2006) while studying quantitative assessment and traditional uses of high value medicinal plants in Chhota Bhangal area of Himachal Pradesh, Western Himalaya, collected information on eight highly traded and locally used medicinal plants form the alpine zones of Chhota Bhangal. The study aimed to quantify the current status of these plants in terms of density, frequency and biomass, and also document the indigenous use of these plants for traditional healthcare. Shailesh and Gardner (2006) assessed the local knowledge in community-based approaches to medicinal plant conservation: lessons from India. The study revealed plants and associated knowledge systems (particularly local knowledge) are gaining wider recognition at the global level, the efforts to recognize and promote the uncodified folk systems, of medicinal knowledge are still inadequate. In country like India, such neglect is evident through the lack of legal recognition and
supporting policies. **Pulok and Atul (2006)** discussed the integrated approaches towards drug development from Ayurveda and other Indian System of medicines. **Bhattarai et al. (2006)** reported ethnomedicinal plants used by the people of Manang district, central Nepal. The study documented 91 ethnomedicinal plant species, belonging to 40 families under 73 genera. A series of 61 Indian medicinal plants belonging plants belonging to 33 different families used in various infectious disorder, were screened for their antimicrobial properties by **Kumar et al. (2006)**. **Kala et al. (2006)** discussed strategies and challenges developing the medicinal plants sector in northern India. A detailed study on the ecological features of a critically rare medicinal plant, Swertia chirayita, in Himalaya was conducted by **Bhatt et al. (2006)**. **Saika et al. (2006)** reported a total of 85 plots belonging to 49 families being used against skin diseases in Assam.

Verma et al. (2007) made observations on the medicinal plants in an urban environment: the medicinal flora of Banares Hindu University, Varanasi, Uttar Pradesh. **Samant et al. (2007)** studied the assessment of Diversity, Distribution, Conservation status of preparation of management plan for medicinal plants in the catchment area of parbati Hydroelectric project state-III in Northwestern Himalaya and reported 04 species of medicinal plants, belonging to different life forms, i.e. trees (23spp.), shrubs (22sssp.) herbs (57 ssp.) and ferns (2 sp.). **Sanjay and Arvind (2007)** discussed the challenges and opportunities in drug discovery from plants. **Semwal et al. (2007)** discussed the current status, distribution and conservation of rare and endangered medicinal plants of Kedarnath wildlife Sanctuary, Central Himalayas, India. **Vidyasagar and Kumar (2007)** reported 18 plant species belonging to 13 families and 18 genera being used in gynecological problems. **Savithramma et al. (2007)** reported tribal and non-tribal inhabitants of Andhra Pradesh used nearly 80 medicinal plants for treating asthma. **Kumar et al. (2007)** reviewed the ethnopharmacological approaches to wound healing-exploring medicinal plants of India. **Kala (2007)** discussed in detail the local preferences of ethnobotanical species in the Indian Himalay with a focus on implications for environmental conservation and found a total 32
medicinal, 16 horticulture, 22 fodder and 20 timber-yielding plant species were selected as the most preferred by the local people of Uttarakhand. Basant and Chaurasia (2007) studied the traditional medicinal plants of cold desert Ladakh-Used in treatment of cold, cough and fever.

Shalini et al. (2008) studied the subsistence dietetic support to the inhabitants of Nanda Devi Biosphere Reserve, India with special reference to wild leaf vegetables and found that diversity of wild leafy vegetables being use by the local inhabitants is 21 species belonging to 14 genera and 11 families. Gupta et al. (2008) presented an overview of Indian novel traditional medicinal plants with anti-diabetic potentials. Ragupathy et al. (2008) made observations about the consensus of the ‘Malasars’ traditional aboriginal knowledge of medicinal plants in the Velliangiri holy hills, India and found total of 95 species belonging to 50 families used for medicinal and general health purposes. Pathak et al. (2008) conducted an ethnobotanical survey was carried out among the ethnic community (Didayi) in Malkangiri district, Orissa. A total of 53 medicinal plant species belonging to 34 families and 52 different species are described under this study. Rashid and Anand (2008) presented a detailed reviewed of the medicinal plant biodiversity in India, its utilization and conservational aspects. Parsad et al. (2008) undertook a detailed review of ipomoea aquatic, An underutilized Green Leafy Vegetable: A Review.

Adhikari et al. (2010) studied the medicinal plants diversity and their conservation status in Wildlife Institute of India Campus, Dehradun and recorded 373 medicinally important plants. These medicinal comprised of 63 trees, 55 shrubs, 208 herbs, 34 climbers, 3 ferns and 10 grasses belong to 94 families. Poaceae, Asteraceae, Cyperaceae and Euphorbiaceae are the largest families and have more than 20 species of medicinal plants. Kadhirve et al. (2010) investigated anti-diabetic medicinal plants used by tribal inhabitants of nalamankadai, chitteri reserve forest dharmapuri, India and reported the uses of 29 species of plants distributed in 28 genera belonging to 22 families to treat diabetics and related complications. Boktapa and Sharma. (2010) carried out an ethnobotanical study in adjoining areas of Manali in Kullu district of Himachal Pradesh and reported total of 33 plants belonging to 24 families. Perumal (2010) enumerated the Pteridophytes widely used by the local people and tribes in the treatment of various diseases in Kolli hills of Namakkal district. Rai and Lalramnghinglova (2010) reported 159 ethnomedicinal plant species belonging to 134 genera and 56 families from tropical forests, home gardens, roadsides and University Campus of Mizoram. Koul (2010) studied High altitude botanicals in integrative medicine and discussed the case scenario from North Western Himalayan region of Ladakh. Pushpangadan and George (2010) studied the ethnomedicinal practices of rural and tribal populations of India with special reference to the mother and childcare. Rethy et al. (2010) conducted ethnobotanical of Dehang-Debang Biosphere Reserve of Arunachal Pradesh with special reference to Mamba tribe and reported 88 useful plant species belonging to 77 families and 58 genera.

Sarin and Kapur (1984) studied the “plant resources exploitation and their utilization in Trikuta hills of Jammu province (J&K State)” and concluded that 123 plant species having economic utility are growing in the Trikuta hills. Of these, about 64 are of medicinal value, 11 of aromatic value, 9 yield resins or gums, 19 are the source of vegetable tannins, 7 produce fatty oil rich seeds and 5 produce laticifers. About 16 plant species, constituting the raw materials for the industry, can be collected in large
quantities. The rest of the plants are sued as crude drugs in the indigenous system of medicine and have a good scope for exploitation. **Kaul et al. (1985)** worked on “Ethno-botanic studies in north-west and trans Himalaya-contribution to the wild food plants of Ladakh” and evaluated eleven species for nutritional use and concluded that these species are good as a part of food by the people living in the remote areas of Ladakh due to the presence of crude proteins, crude fiber, crude fat, soluble sugars, carbohydrates and minerals like sodium, calcium, iron and phosphorus. **Kaul et al. (1986)** in their paper on “Ethno-botanic studies in north-west and trans-Himalaya IV. Some traditionally used tea substitutes from Jammu and Kashmir”, collected seven plants which have been traditionally used as tea substitutes by the ethnic groups of Jammu and Kashmir State. The tea is prepared from the decoction of roots of **Bergenia ligulata (Wall.)**, **Fragaria vesca**, **Geranium wallichium** and **Polygonum amplexicaule** Leaves of **Potentiall fruticosa**, bark of **Taxus baccata**, and aerial portiosn of **Thymus serpyllum** also used for the preparation of tea. **Kapur (1989)** worked on the “Economically useful fodder plants of Ram Nagar- Dudu valley (Jammu province)” and enumerated 87 fodder species with their local names, altitudinal range, lopping period and present content of dry matter. Out of 87 species listed 43 are tree species. **Kaul et al. (1989)** presented a paper on “Ethno-botanical studies in north-west and trans-Himalaya VI. Contribution to the ethno-botany of Basohli-Bani region, J&K” and reported 38 economically important plant species from the region. The medicinal use of **Rosulaire alpestris** and **Viburnum grandiflorum** has been reported for the first time. **Sharma and Singh (1989)** worked on “Ethno-botanical studies in north-west and trans-Himalaya- V. Ethno-veterinary medicinal plants used in Jammu and Kashmir, India,” In this study, explorations carried out during the three years have brought to light 18 plant species which have been used to alleviate the common sufferings of livestock of this region.

Kaul et al. (1990) presented their findings on the “Ethno-botanical studies in north-west and trans-Himalaya VII. Home remedies for arthritis in Kashmir Himalaya” and reported five herbs used in the treatment of arthritis.
in Kashmir Himalayas. In this paper the ethno-medical properties of three species namely *Delphinium roylei*, *Polygonum alpinum* and *Senecio chenopodifolius*, the root parts of which are only being used against arthritis, have been reported for the first time. The other two species used for the purpose have been reported as *Rheum austral* and *Saussurea costus*. Siddique *et al.* (1995) determined the “Status of important medicinal plants of Kashmir Himalayas”. During their three-year survey, the well known medicinal and aromatic plants used in the area have been listed along with the plant(s) used and the mode of administration. The authors also formulated a list of rare and endangered plants of the area. Kirn *et al.* (1999) reported “Ethno-botanical observations on the gymnosperms of Poonch district (J&K State), India” and enumerated nine species of gymnosperms such as *Abies pindrow*, *A. spectabilis*, *Cedrus deodara*, *Juniperus communis*, *J. recurva*, *Picea smithiana*, *Pinus roxburghii*, *P. wallichiana* and *Taxus wallichiana*, which are being used by the Gujjars and Bakkarwals of the area, during their trans-humane migration in the upper hill regions for meeting their all kinds of daily needs including the medicinal uses. The paper deals with their botanical description, distribution and uses. All the nine species are found wild in the district.

Kant and Sharma (2001) presented their studies on the “Medicinal plants of Patnitop and adjoining hills (J&K) and their conservation”. They reported 56 medicinally important plant species, parts of the plant used and their utility, form the study area. According to the study the area is under the stress of a lot many biotic activities like tourism, development, nomadism, encroachments and over exploitation of resources. Thus there is an urgent need of application of sound conservation strategies and proper management practice to save this useful bio-resources of the area. Kirn and Kapahi (2001b) while presenting “Ethno-botanical notes on some ferns and fern-allies of Jammu and Kashmir state, India” enumerated 19 taxa belonging to 12 genera and 11 families of pteridophytes of Jammu and Kashmir. Local names, family and ethno-botanical details of all the taxa have been discussed. The data presented has been obtained through interviews conducted with
ethnic groups of the region. **Nawchoo et al. (2004)** while discussing “Studies on the conservation biology of *Jurinea dolomia* and *Gentiana kurroa*, two important medicinal plants of North West Himalaya” proposed a protocol for conservation of Himalayan species. **Beigh et al. (2003)** studied traditional veterinary medicine among the tribes of Kashmir Himalaya. A total of 25 plants in 19 families were used in veterinary practice by local farmers, elders, and shepherds in the Himalayan Mountain region of Kashmir.