CHAPTER-III

ON WEAKLY SYMMETRIC ε - TRANS-SASAKIAN MANIFOLDS.

The purpose of the paper is to continue the work of S.S.Shukla and D.D.Singh on ε-trans-Sasakian manifold, a new creation which is introduced by [1]. In fact we studied some of the properties of weakly symmetric ε-trans-Sasakian manifold and generalize some of the results of A.A Shaikh and S.K Hui [6] using weakly symmetric trans-Sasakian manifold i.e. for space like manifold [2]. We also studied some of the properties of ε-trans-Sasakian manifold.

3.1. Introduction.

Based on the work of K.L. Duggal [1], recently S.S.Shukla and D.D.Singh [2] have introduced the notion of ε-Trans-Sasakian manifold which is newly created by them and they studied the basic properties of this manifold. ε-Trans-Sasakian manifold is in the developing stage. In this paper we also consider ε-Trans-Sasakian manifold of type (α, β) study the properties of weakly symmetric ε-Trans-Sasakian manifold and generalize some of the results of A.A.Shaikh and S.K Hui [6]. We feel that there is a lot of scope for further research in this field.

The paper has been organized as follows. In section 2 preliminary results on ε-Trans-Sasakian manifold have been given. Section 3 deals with the main results of the paper wherein the significance of the ξ-

The content of this chapter is published in International Journal of Physical Sciences Ultra Scientist Vol. 23(1) M, pp 195-208 (2011).
Sectional Curvature of ε-Trans-Sasakian manifold of type (α, β) is introduced and used in some of the Theorems, also study the properties of weakly symmetric ε-Trans-Sasakian manifold and in fact many special cases of the theorems have been studied. Further an important technique for the evaluation of the smooth functions α and β in terms of codifferentials of differentiable 2-form Φ and 1-form η are given respectively.

3.2. Preliminaries. A $(2n+1)$-dimensional differentiable manifold (M, g) is said to be an ε–almost contact metric manifold [1], if it admits a $(1, 1)$ tensor field φ, a structure vector field ξ, a 1-form η and an indefinite metric g such that.

(3.2.1) \[\varphi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \]

(3.2.2) \[g(\xi, \xi) = \varepsilon, \quad \eta(X) = \varepsilon g(X, \xi). \]

Using the above results one has,

(3.2.2) \[\varphi \xi = 0 \quad \text{and} \quad \eta(\varphi X) = 0, \]

for any C^∞ vector field X,

(3.2.3) \[g(\varphi X, \varphi Y) = g(X, Y) - \varepsilon \eta(X) \eta(Y), \]

$X, Y \in \chi(M)$, where $\chi(M)$ is the set of all C^∞ vector fields on M.

Replacing Y by φY in (3.2.3) we get

\[g(\varphi X, \varphi^2 Y) = g(X, \varphi Y) - \varepsilon \eta(X) \eta(\varphi Y), \]
\[g(\varphi X, -Y + \eta(Y) \xi) = g(X, \varphi Y) - \varepsilon \eta(X) 0, \]
\[-g(\varphi X, Y) + \eta(Y) g(\varphi X, \xi) = g(X, \varphi Y) \]

(3.2.3) \[g(\varphi X, Y) = -g(X, \varphi Y). \]

This shows that φ is skew symmetric.

ε is 1 or -1 according as ξ is space like or time like and rank of φ is $2n$. If
\((3.2.4) \) \(\Phi(X, Y) = g(X, \phi Y), \)

for all \(X, Y \in \mathfrak{X}(M) \), where \(\Phi \) is the fundamental 2-form of the structure, then \(M(\phi, \xi, \eta, g, \epsilon) \) is called an \(\epsilon \)-almost contact metric manifold.

An \(\epsilon \)-almost contact metric manifold is called an \(\epsilon \)-trans-Sasakian Manifold if,

\[
(3.2.5) \quad (\nabla_X \phi) Y = \alpha \{ g(X, Y) \xi - \epsilon \eta(Y) X \} + \beta \{ g(\phi X, Y) \xi - \epsilon \eta(Y) \phi X \},
\]

for all \(X, Y \in \mathfrak{X}(M) \), where \(\nabla \) is the Levi-Civita connection with respect to \(g \).

An \(\epsilon \)-almost contact metric manifold is called an \(\epsilon \)-trans-Sasakian Manifold if and only if [2]

\[
(3.2.6) \quad \nabla_X \xi = \epsilon \{ -\alpha \phi X + \beta (X - \eta(X) \xi) \};
\]

for all \(X, Y \in \mathfrak{X}(M) \).

This section is devoted to basic results of \(\epsilon \)-Trans-Sasakian Manifold. For an \(\epsilon \)-trans-Sasakian Manifold, the following relations hold [2]

\[
(3.2.7) \quad (\nabla_X \eta) Y = -\alpha g(\phi X, Y) + \beta \{ g(X, Y) - \epsilon \eta(X) \eta(Y) \},
\]

for all \(X, Y \in \mathfrak{X}(M) \).

\[
(3.2.8) \quad R(X, Y) \xi = (\alpha^2 - \beta^2) \{ \eta(Y) X - \eta(X) Y \}
+ 2\alpha \beta \{ \eta(Y) \phi X - \eta(X) \phi Y \}
+ \epsilon \{ (Y \alpha) \phi X - (X \alpha) \phi Y + (Y \beta) \phi^2 X - (X \beta) \phi^2 Y \},
\]

\[
(3.2.9) \quad R(\xi, Y) X = (\alpha^2 - \beta^2) \{ \epsilon g(X, Y) \xi - \eta(X) Y \}
+ 2\alpha \beta \{ \epsilon g(\phi X, Y) \xi + \eta(X) \phi Y \}
+ \epsilon (X \alpha) \phi Y + \epsilon g(\phi X, Y) \text{grad} \alpha
- \epsilon g(\phi X, \phi Y) \text{grad} \beta + \epsilon X \beta (Y - \eta(Y) \xi)
\]
(3.2.10) \[R(\xi, Y)\xi = \{\alpha^2 - \beta^2 - \varepsilon \xi^2\} \{ - Y - \eta(Y)\xi \} - \{2\alpha \beta + \varepsilon \xi \alpha\} \phi Y , \]
(3.2.11) \[2\alpha \beta + \varepsilon \xi \alpha = 0 , \]
for all \(X, Y \in \chi(M) \).

In an \(\varepsilon \) - trans-Sasakian Manifold of type \((\alpha, \beta) \) if,
\[
\phi \text{grad} \alpha = (2n - 1)\text{grad} \beta ,
\]
then
(3.2.12) \[\xi \beta = 0 , \]
(3.2.13) \[\eta(R(X, Y)Z) = \varepsilon (\alpha^2 - \beta^2) \{g(Y, Z)\eta(X) - g(X, Z)\eta(Y)\} + 2\varepsilon \alpha \beta \{\eta(X)g(\phi Y, Z) - \eta(Y)g(\phi X, Z)\} + \{(X\alpha)g(\phi Y, Z) - (Y\alpha)g(\phi X, Z)\} + \{X\beta g(\phi^2 Y, Z) - (Y\beta)g(\phi^2 X, Z)\}, \]
(3.2.14) \[\eta(R(X, Y)\xi) = 0 , \]
for all \(X, Y, Z \in \chi(M) \).

In an \((2n+1) \) - dimensional \(\varepsilon \) - trans-Sasakian Manifold, we have
(3.2.15) \[S(X, \xi) = \{2n(\alpha^2 - \beta^2) - \varepsilon \xi^2\} \eta(X) - \varepsilon (\phi X)\alpha - \varepsilon (2n - 1)X\beta , \]
(3.2.16) \[Q\xi = \varepsilon [\{2n(\alpha^2 - \beta^2) - \varepsilon \xi^2\} \xi + \phi \text{grad} \alpha - (2n - 1)\phi \text{grad} \beta] , \]
for any \(X \in \chi(M) \).

3.3. Some properties of \(\varepsilon \) - Trans-Sasakian Manifold

An \(\varepsilon \) - almost contact metric manifold is called an \(\varepsilon \) -trans-Sasakian manifold if,
\[
(\nabla_X \phi)Y = \alpha \{g(X, Y)\xi - \varepsilon \eta(Y)X\} + \beta \{g(\phi X, Y)\xi - \varepsilon \eta(Y)\phi X\}
\]
for any \(X, Y \in \chi(M) \).

We here note that if \(\varepsilon = 1 \), i.e. structure vector field \(\xi \) is space like, then an \(\varepsilon \) -trans-Sasakian manifold is usual trans-Sasakian manifold [3]. If \(\Phi \) is the fundamental 2-form of the \(\varepsilon \) -almost contact metric structure defined by (2.4), then we can state,

Theorem 3.3.1. In an \(\varepsilon \)- Trans-Sasakian Manifold we have,
\((\nabla_X \Phi)(Y, Z) = \varepsilon \{ \alpha \{ g(X, Z)\eta(Y) - \eta(Z)g(X, Y) \} + \beta \{ g(\varphi X, Z)\eta(Y) - \eta(Z)g(\varphi X, Y) \} \}, \)

where \(\Phi \) is the fundamental 2-form of the \(\varepsilon \)-almost contact metric structure defined by (2.4)

Proof. Consider,

\[
(3.3.1) \quad (\nabla_X \Phi)(Y, Z)
\]

\[
= \nabla_X (\Phi(Y, Z)) - \Phi(\nabla_X Y, Z) - \Phi(Y, \nabla_X Z)
\]

\[
= \nabla_X (g(Y, \varphi Z)) - \Phi(\nabla_X Y, Z) - \Phi(Y, \nabla_X Z)
\]

\[
= (\nabla_X g)(Y, \varphi Z) + g(\nabla_X Y, \varphi Z) + g(Y, \nabla_X \varphi Z)
\]

\[
= -g(\nabla_X Y, \varphi Z) - \Phi(Y, \nabla_X Z)
\]

\[
= (\nabla_X g)(Y, \varphi Z) + g(\nabla_X Y, \varphi Z)
\]

\[
+ g(Y, (\nabla_X \varphi)Z) + g(Y, \varphi \nabla_X Z),
\]

\[
- g(\nabla_X Y, \varphi Z) - \Phi(Y, \nabla_X Z)
\]

Canceling the opposite signed terms and using the fact that \(\nabla_X g = 0 \),

\(\Phi(Y, \nabla_X Z) = g(Y, \varphi \nabla_X Z) \),

in (3.3.1), we get

\[
(3.3.2) \quad (\nabla_X \Phi)(Y, Z) = g(Y, (\nabla_X \varphi)Z)
\]

\[
= g[Y, \alpha \{ g(X, Z)\xi - \varepsilon \eta(Z)X \} + \beta \{ g(\varphi X, Z)\xi - \varepsilon \eta(Z)\varphi X \}]
\]

Simplifying (3.3.2) by using the linearity property of \(g \) and \(\varepsilon g(Y, \xi) = \eta(Y) \), we get,

\[
(3.3.3)(\nabla_X \Phi)(Y, Z) = \alpha [g(X, Z)g(Y, \xi) - \varepsilon \eta(Z)g(Y, X)]
\]

\[
+ \beta [g(\varphi X, Z)g(Y, \xi) - \varepsilon \eta(Z)g(\varphi X, Y)]
\]

\[
= \alpha [g(X, Z)\varepsilon \eta(Y) - \varepsilon \eta(Z)g(Y, X)]
\]

\[
+ \beta [g(\varphi X, Z)\varepsilon \eta(Y) - \varepsilon \eta(Z)g(\varphi X, Y)]
\]

The proof of Theorem 3.1 follows from (3.3.3).
Now by taking $Z = \xi$, $Y = X$ in (3.3.3) of theorem 3.1 and simplifying, we get

$$\nabla_X \phi(X, \xi) = \epsilon [\alpha \{g(X, \xi)\eta(X) - \eta(\xi)g(X, X)\}$$

$$+ \beta \{g(\varphi X, \xi)\eta(X) - \eta(\xi)g(\varphi X, X)\}],$$

(3.3.4) \hspace{1cm} (\nabla_X \phi)(X, \xi) = -\epsilon \alpha,$$

where we have used the fact that X is orthogonal to ξ, $g(\varphi X, X) = 0$, and $g(X, X) = 1$. Also from (3.2.7), we have

$$(\nabla_X \eta)Y = -\alpha g(\varphi X, Y) + \beta \{g(X, Y) - \epsilon \eta(X)\eta(Y)\}.$$

Putting $Y = X$ in the above equation, we get

$$(\nabla_X \eta)X = -\alpha g(\varphi X, X) + \beta \{g(X, X) - \epsilon \eta(X)\eta(X)\}$$

Applying the similar arguments as in (3.3.4), we get

(3.3.5) \hspace{1cm} (\nabla_X \eta)X = \beta$$

Hence we can state,

Theorem 3.3.2. In an ϵ-trans-Sasakian Manifold, the smooth functions α, β are given by (3.3.4) and (3.3.5) respectively.

Remark 3.3.1. If ϕ and η are known the smooth functions α and β can be evaluated.

Now taking $\{e_i; i = 1, 2, 3, \ldots, 2n + 1\}$ as the orthonormal basis at each point of the tangent space so that,

$$(\nabla_{e_i} \phi)(e_i, \xi) = \epsilon [\alpha \{g(e_i, \xi)\eta(e_i) - \eta(\xi)g(e_i, e_i)\}$$

(3.3.6) \hspace{1cm} + \beta \{g(\varphi e_i, \xi)\eta(e_i) - \eta(\xi)g(\varphi e_i, e_i)\}],$$

Simplifying (3.3.6), we get

$$(\nabla_{e_i} \phi)(e_i, \xi) = -\delta \phi(\xi) = -2n \epsilon \alpha,$$

This simplifies to.
Also from (3.2.7), we have

\[(\nabla_{\chi} \eta)Y = -\alpha g(\phi X, Y) + \beta \{g(X, Y) - \epsilon \eta(X)\eta(Y)\}\]

Putting \(Y = X = e_{i}\) in the above, we get

\[(\nabla_{e_{i}} \eta)e_{i} = -\alpha g(e_{i}, e_{i}) + \beta \{g(e_{i}, e_{i}) - \epsilon \eta(e_{i})\eta(e_{i})\}\]

\[-\delta \eta = \beta \{(2n + 1) - \epsilon \}\]

(3.3.8) \hspace{1cm} \delta \eta = \beta \{\epsilon - (2n + 1)\}

Hence we can state,

Theorem 3.3.3. In an \((2n+1)\) - dimensional \(\epsilon\) - Trans-Sasakian Manifold the codifferentials of the fundamental two form \(\Phi\) and 1-form \(\eta\) satisfy (3.3.7) and (3.3.8) respectively.

Remark 3.3.2. If \(\Phi\) and \(\eta\) are known, the smooth functions \(\alpha\) and \(\beta\), can also be evaluated by using (3.3.7) and (3.3.8) respectively.

Next consider,

\[
d\eta(X,Y) = \frac{1}{2} \{X\eta(Y) - Y\eta(X) - \eta[X,Y]\}
\]

\[= \frac{1}{2} \{\nabla_{X} \eta(Y) - \nabla_{Y} \eta(X) - \eta[\nabla_{X} Y - \nabla_{Y} X]\}\]

\[= \frac{1}{2} \{(\nabla_{X} \eta)(Y) + \eta(\nabla_{X} Y) - (\nabla_{Y} \eta)(X)\}
\]

\[-\eta(\nabla_{Y} X) - \eta(\nabla_{X} Y) + \eta(\nabla_{Y} X)\]

(3.3.9) \hspace{1cm} d\eta(X,Y) = \frac{1}{2} \{(\nabla_{X} \eta)(Y) - (\nabla_{Y} \eta)(X)\}

Now substituting for \((\nabla_{X} \eta)Y\) in (3.9), we get

\[
d\eta(X,Y) = \frac{1}{2} \{-\alpha g(\phi X, Y) + \beta \{g(X, Y) - \epsilon \eta(X)\eta(Y)\}\}
\]

\[+ \alpha g(\phi Y, X) - \beta \{g(X, Y) - \epsilon \eta(X)\eta(Y)\}\]

Simplification gives
\[
\frac{1}{2} \{ -\alpha g(\varphi X, Y) + \alpha g(\varphi Y, X) \}
\]
\[
d\eta(X, Y) = \alpha \Phi(X, Y)
\]

This can be expressed as [5],

(3.3.10) \quad d\eta = \alpha \Phi

If \(\alpha \) is a non zero constant, \(\Phi \) is closed and one has [5] (cf.Blair D.E 1976) and using (3.2.5), then we get,

\[
(3.3.11) \quad g((\nabla_X \varphi) Y, Z) = d\eta(\varphi Y, X)\eta(Z) - d\eta(\varphi Z, X)\eta(Y)
\]
\[
= \alpha \Phi(\varphi Y, X)\eta(Z) - \alpha \Phi(\varphi Z, X)\eta(Y)
\]
\[
= \alpha \{ g(X, Y)\eta(Z) - \varphi g(X, Z)\eta(Y) \}
\]
\[
= \alpha \{ g(X, Y)g(Z, \xi) - \varphi g(X, Z)g(Y, \xi) \}
\]

which implies,

(3.3.12) \quad (\nabla_X \varphi) Y = \alpha \{ g(X, Y)\xi - \varphi X \eta(Y) \}

from (3.2.5) we have

\[
(\nabla_X \varphi) Y = \alpha \{ g(X, Y)\xi - \varphi X \eta(Y) \} + \beta \{ g(\varphi X, Y)\xi - \varphi \eta(Y)\varphi X \}
\]

Substituting for this from (3.3.12), we get

\[
\alpha \{ g(X, Y)\xi - \varphi X \eta(Y) \} = \alpha \{ g(X, Y)\xi - \varphi \eta(Y)X \} + \beta \{ g(\varphi X, Y)\xi - \varphi \eta(Y)\varphi X \}
\]

which on further simplification, we get

\[
\beta \{ g(\varphi X, Y)\xi - \varphi \eta(Y)\varphi X \} = 0
\]

From which we have,

(3.3.13) \quad \beta = 0.

Thus we can state,

Theorem 3.3.4. An \(\varepsilon \)- Trans –Sasakian manifold of type \((\alpha, \beta) \) with \(\alpha \) a non zero constant is \(\varepsilon - \alpha \)-Sasakian Manifold.
Note. This theorem is proved in [2], however, we used technique of [4] to prove the theorem.

\(\xi \)-Sectional Curvature. The \(\xi \)-Sectional Curvature \(K(\xi, X) \) of an \(\varepsilon \)-trans-\(\xi \)-Sasakian manifold of type \((\alpha, \beta)\) for a unit vector field \(X \) orthogonal to \(\xi \) is given by

\[
K(\xi, X) = R(\xi, X, \xi, X)
\]

From (2.10) replacing \(Y = X \) we have,

\[
\begin{align*}
R(\xi, X) \xi &= \{\alpha^2 - \beta^2 - \varepsilon \xi \beta\} \{-X - \eta(X)\xi\} - \{2\alpha \beta + \varepsilon \xi \alpha\} \phi X \\
g(R(\xi, X) \xi, X) &= \{\alpha^2 - \beta^2 - \varepsilon \xi \beta\} \{-g(X, X) - \eta(X)g(\xi, X) - \{2\alpha \beta + \varepsilon \xi \alpha\} g(\phi X, X)
\end{align*}
\]

This under the above conditions simplifies to,

\[
K(\xi, X) = R(\xi, X, \xi, X) = -\{\alpha^2 - \beta^2 - \varepsilon \xi \beta\}
\]

Which is an expression for \(\xi \)-Sectional Curvature \(K(\xi, X) \) of an \(\varepsilon \)-trans-\(\xi \)-Sasakian manifold of type \((\alpha, \beta)\).

If \(\alpha^2 - \beta^2 - \varepsilon \xi \beta \neq 0 \), then \(\varepsilon \)-Trans-\(\xi \)-Sasakian manifold is of non-zero \(\xi \)-sectional curvature. Further if \(\alpha^2 - \beta^2 - \varepsilon \xi \beta = 0 \), then \(\varepsilon \)-Trans-\(\xi \)-Sasakian manifold is of zero \(\xi \)-sectional curvature. Thus we have

Theorem 3.3.5. In an \(\varepsilon \)-Trans-\(\xi \)-Sasakian manifold \(M \), the \(\xi \)-Sectional Curvature is given by (3.3.15).

From (3.3.15) we have the following remarks.

Remarks.

i) In an \(\varepsilon \)-\(\alpha \)-Sasakian Manifold the \(\xi \)-Sectional Curvature

\[
K(\xi, X) = -\alpha^2
\]

so that for an \(\varepsilon \)-Sasakian Manifold the \(\xi \)-sectional curvature is -1.

ii) In an \(\varepsilon \)-\(\beta \)-Kenmotsu Manifold the \(\xi \)-Sectional Curvature

\[
K(\xi, X) = \beta^2
\]

so that for an \(\varepsilon \)-Kenmotsu Manifold the \(\xi \)-sectional curvature is 1.
iii) In an (ε)-Cosymplectic Manifold the ξ-sectional curvature $K(\xi, X) = 0$.

3.4. Weakly Symmetric ε - Trans –Sasakian manifold.

Definition 3.4.1. A non flat Riemannian manifold (M^n, g) (n>2) is called weakly symmetric if its curvature tensor R of type $(0, 4)$ satisfies the condition

for all vector fields $X, Y, Z, U, V \in \chi(M)$, A, B and D are associated 1-forms not simultaneously zero, ∇ denotes the operator of the covariant differentiation with respect to the Riemannian metric g, R is the Riemannian curvature of the manifold M.

Definition 3.4.2. An ε-Trans -Sasakian Manifold (M^{2n+1}, g) (n>1) is said to be weakly symmetric if its Riemannian curvature R of type $(0, 4)$ satisfies (4.1)

Let $\{\epsilon_i : i = 1, 2, 3, ..., 2n+1\}$ be an orthonormal basis of the tangent space $T_p(M)$ at point p of the manifold. Then setting $Y = V = \epsilon_i$ in (4.1) and taking the summation over $i, 1 \leq i \leq 2n+1$, we get,

Putting $X = Z = U = \xi$ in (3.4.2), we get
By using (3.2.9), (3.2.15), equation (3.4.3) reduces to
\begin{equation}
(\nabla_\xi S)(\xi, \xi) = 2n \{A(\xi) + B(\xi) + D(\xi)\}\left(\alpha^2 - \beta^2 - \varepsilon \xi \beta\right)
\end{equation}

On the other hand,
\begin{equation}
(\nabla_\xi S)(\xi, \xi) = \nabla_\xi S(\xi, \xi) - S(\nabla_\xi \xi, \xi) - S(\xi, \nabla_\xi \xi)
= \nabla_\xi \{2n(\alpha^2 - \beta^2 - \varepsilon \xi \beta)\} - 2S(\nabla_\xi \xi, \xi)
\end{equation}
Using the fact that \(\nabla_\xi \xi = 0\) in (3.4.5), we get.
\begin{equation}
(\nabla_\xi S)(\xi, \xi) = 2n\{2\alpha \xi \alpha - 2\beta \xi \beta - \varepsilon \xi (\xi \beta)\}
\end{equation}

In view of (4.4) and (4.6) it follows that,
\begin{equation}
\{A(\xi) + B(\xi) + D(\xi)\}\left(\alpha^2 - \beta^2 - \varepsilon \xi \beta\right) = \{2\alpha \xi \alpha - 2\beta \xi \beta - \varepsilon \xi (\xi \beta)\}
\end{equation}
From (3.4.7), it follows that
\begin{equation}
A(\xi) + B(\xi) + D(\xi) = \frac{2\alpha \xi \alpha - 2\beta \xi \beta - \varepsilon \xi (\xi \beta)}{\alpha^2 - \beta^2 - \varepsilon \xi \beta},
\end{equation}
provided, \(\alpha^2 - \beta^2 - \varepsilon \xi \beta \neq 0\), hence we can state,

Theorem 3.4.1. In an weakly symmetric \(\varepsilon\)-trans-Sasakian Manifold \((M^{2n+1}, g)\) \((n>1)\) of non vanishing \(\xi\)-sectional curvature the relation (4.8) holds.

Corollary 3.4.1. In an weakly symmetric \(\varepsilon\)-Trans-Sasakian Manifold \((M^{2n+1}, g)\) \((n>1)\) of non vanishing \(\xi\)-sectional curvature the relation with \(\alpha\) and \(\beta\) as non zero constants the following relation holds,
\begin{equation}
A(\xi) + B(\xi) + D(\xi) = 0.
\end{equation}
Proof. Follows by taking \(\alpha \) and \(\beta \) as constants in (4.8) of Theorem 4.1 and also using the fact that for non vanishing \(\xi \)-sectional curvature \(\alpha^2 - \beta^2 \neq 0 \).

Corollary 3.4.2. In an weakly symmetric \(\varepsilon \)-Trans -Sasakian Manifold \((M^{2n+1}, g) \) \((n>1)\) of non vanishing \(\xi \)-sectional curvature the relation with \(\alpha \) as non zero constant the relation (3.4.9) holds.

Proof. As in theorem 4.1, it can also follow that weakly symmetric \(\varepsilon \)-Trans -Sasakian Manifold \((M^{2n+1}, g) \) \((n>1)\) of non vanishing \(\xi \)-sectional curvature, with \(\alpha \) as non zero constant is always \(\varepsilon \)-\(\alpha \)-Sasakian Manifold so that \(\beta = 0 \), hence from (3.4.8), proof follows.

Remark. There is no Cosymplectic \(\varepsilon \)-Trans -Sasakian Manifold \((M^{2n+1}, g) \) \((n>1)\) that LHS of (3.4.8) becomes an indeterminate.

Next substituting \(X = Z = \xi \) in (4.2), we get.

\[
(V \xi S)(\xi, U) = A(\xi)S(\xi, U) + B(\xi)S(\xi, U)
+ D(U)S(\xi, \xi) + B(R(\xi, \xi)U) + D(R(\xi, U)\xi)
\]

(3.4.10) \((V \xi S)(\xi, U) = (A(\xi) + B(\xi))[\{2n(\alpha^2 - \beta^2) - \varepsilon \xi \beta\} \eta(U)
- \varepsilon(\phi U)\alpha - \varepsilon(2n - 1)U\beta}\}

\[+ 2n(\alpha^2 - \beta^2 - \varepsilon \xi \beta)D(U)\]

\[-(\alpha^2 - \beta^2 - \varepsilon(\xi \beta))D(U)\]

\[+ (\alpha^2 - \beta^2 - \varepsilon(\xi \beta))\eta(U)D(\xi)\]

Further simplifying (3.4.10) by using (3.4.8), we get
Now consider left hand side of (3.4.11),

\[(\nabla_{\xi} S)(\xi, U) = \nabla_{\xi} S(\xi, U) - S(\nabla_{\xi} \xi, U) - S(\xi, \nabla_{\xi} U)\]

\[= \nabla_{\xi} \{2n(\alpha^2 - \beta^2) - \varepsilon \xi \beta \} \eta(U)\]

\[- \varepsilon(\varphi U)\alpha - \varepsilon(2n - 1)U\beta\]

\[= \{2n(\alpha^2 - \beta^2) - \varepsilon \xi \beta \} \eta(\nabla_{\xi} U)\]

\[- \varepsilon(\varphi \nabla_{\xi} U)\alpha - \varepsilon(2n - 1)\nabla_{\xi} U\beta\}

Further simplifying (4.12) by taking covariant derivatives with respect to the structure vector field \(\xi\) we get,

\[(\nabla_{\xi} S)(\xi, U) = \{2n(2\alpha \xi \alpha - 2\beta \xi \beta) - \varepsilon \xi(\xi \beta)\} \eta(U)\]

\[- \varepsilon \varphi U(\xi \alpha) - \varepsilon(2n - 1)U(\xi \beta)\]

In view of (3.4.11) and (3.4.13), we get,

\[\{2n(2\alpha \xi \alpha - 2\beta \xi \beta) - \varepsilon \xi(\xi \beta)\} \eta(U) - \varepsilon \varphi U(\xi \alpha) - \varepsilon(2n - 1)U(\xi \beta)\]

\[= \{2n(2\alpha \xi \alpha - 2\beta \xi \beta) - \varepsilon \xi(\xi \beta)\} \eta(U)\]

\[- \varepsilon(\varphi U)\alpha - \varepsilon(2n - 1)U\beta\} + (2n - 1)(\alpha^2 - \beta^2 - \varepsilon \xi \beta)D(U)\]

Simplifying (3.4.14) for \(D(U)\), we get

\[D(U) = \frac{2n(2\alpha \xi \alpha - 2\beta \xi \beta) - \varepsilon \xi(\xi \beta)\} \eta(U)}{(2n - 1)(\alpha^2 - \beta^2 - \varepsilon \xi \beta)}\]
\[- \varepsilon \left(\frac{(2n-1)U(\xi \beta) + \varphi U(\xi \alpha)}{(2n-1)(\alpha^2 - \beta^2 - \varepsilon \xi \beta)} \right) \]

\[+ D(\xi) \left[\frac{(2n-1)\{\alpha^2 - \beta^2\} \eta(U) - \varepsilon U \beta} - \varepsilon (\varphi U) \alpha \right] \]

\[- \frac{2\alpha \xi \alpha - 2\beta \xi \beta - \xi(\xi \beta)}{(2n-1)(\alpha^2 - \beta^2 - \varepsilon \xi \beta)^2} \cdot 2n(\alpha^2 - \beta^2 - \varepsilon \xi \beta) \eta(U) \]

\[- \varepsilon (\varphi U) \alpha - \varepsilon (2n-1) U \beta, \]

for any vector field \(U \) provided, \(\alpha^2 - \beta^2 - \varepsilon \xi \beta \neq 0 \).

Next substituting \(X = U = \xi \) in (3.4.2) and proceeding in a similar manner as above, we get,

\[(3.4.16) \quad B(Z) = \frac{2n(2\alpha \xi \alpha - 2\beta \xi \beta - \varepsilon \xi (\xi \beta)) \eta(Z)}{(2n-1)(\alpha^2 - \beta^2 - \varepsilon \xi \beta)} \]

\[- \varepsilon \left(\frac{(2n-1)Z(\xi \beta) + \varphi Z(\xi \alpha)}{(2n-1)(\alpha^2 - \beta^2 - \varepsilon \xi \beta)} \right) \]

\[+ B(\xi) \left[\frac{(2n-1)\{\alpha^2 - \beta^2\} \eta(Z) - \varepsilon Z \beta} - \varepsilon (\varphi Z) \alpha \right] \]

\[- \frac{2\alpha \xi \alpha - 2\beta \xi \beta - \xi(\xi \beta)}{(2n-1)(\alpha^2 - \beta^2 - \varepsilon \xi \beta)^2} \cdot 2n(\alpha^2 - \beta^2 - \varepsilon \xi \beta) \eta(Z) \]

\[- \varepsilon (\varphi Z) \alpha - \varepsilon (2n-1) Z \beta, \]

for any vector field \(Z \) provided, \(\alpha^2 - \beta^2 - \varepsilon \xi \beta \neq 0 \). Hence we can state,

Theorem 3.4.2. In an weakly symmetric \(\varepsilon \)-Trans-Sasakian Manifold \((M^{2n+1}, g)\) \((n > 1)\) of non vanishing \(\xi \)-sectional curvature, the associated 1-forms \(D \) and \(B \) are given by (3.4.15) and (3.4.16) respectively.

Putting \(Z = U = \xi \) in (3.4.2), we get
\[(\nabla_x S)(\xi, \xi) = A(X)S(\xi, \xi) + B(\xi)S(X, \xi) \\
+ D(\xi)S(X, \xi) + B(R(X, \xi)\xi) \\
+ D(R(X, \xi)\xi)\]

\[(\nabla_x S)(\xi, \xi) = 2n(\alpha^2 - \beta^2 - \varepsilon(\xi\beta))A(X) \\
+ [B(\xi) + D(\xi)][\{2n(\alpha^2 - \beta^2) - \varepsilon \xi\beta\}]\eta(X) \\
- \varepsilon(\phi X)\alpha - \varepsilon(2n - 1)X\beta \]

\[-[\alpha^2 - \beta^2 - \varepsilon(\xi\beta)][\eta(X)\{B(\xi) + D(\xi)\} - B(X) - D(X)]\]

(3.4.17) \(\nabla_x S)(\xi, \xi) = 2n(\alpha^2 - \beta^2 - \varepsilon(\xi\beta))A(X) \\
+ [B(\xi) + D(\xi)][\{2n(\alpha^2 - \beta^2) - \varepsilon \xi\beta\}]\eta(X) \\
- \varepsilon(\phi X)\alpha - \varepsilon(2n - 1)X\beta \]

\[-[\alpha^2 - \beta^2 - \varepsilon(\xi\beta)][\eta(X)\{B(\xi) + D(\xi)\} \\
+ \{\alpha^2 - \beta^2 - \varepsilon(\xi\beta)\} \{B(X) + D(X)\}]\]

Now consider left hand side of (4.17)

\[(\nabla_x S)(\xi, \xi) = \nabla_x S(\xi, \xi) - S(\nabla_x \xi, \xi) - S(\xi, \nabla_x \xi)\]

\[(\nabla_x S)(\xi, \xi) = \nabla_x S(\xi, \xi) - 2S(\nabla_x \xi, \xi)\]

\[= \nabla_x \{2n(\alpha^2 - \beta^2 - \varepsilon(\xi\beta))\} \]

\[- 2S(\varepsilon \{-\alpha \phi X + \beta(X - \eta(X)\xi)\}, \xi) \]

\[= 2n\{2\alpha(X\alpha) - 2\beta(X\beta) - \varepsilon X(\xi\beta))\} \]

\[+ 2\varepsilon\alpha S(\phi X, \xi) - 2\varepsilon\beta S(X, \xi) + 2\varepsilon\beta\eta(X)S(\xi, \xi)\]
\((3.4.18)\) \((\nabla_X S)(\xi, \xi) = 2n\{2\alpha(X\alpha) - 2\beta(X\beta) - \varepsilon X(\xi\beta)\} \]
\[-2\alpha\{(\varphi^2 X)\alpha + (2n - 1)\varphi X\beta\} \]
\[-2\varepsilon\beta\{2n(\alpha^2 - \beta^2) - \varepsilon \xi \beta\}\eta(X) \]
\[-\varepsilon(\varphi X)\alpha - \varepsilon(2n - 1)X\beta \]
\[+ 4n\varepsilon\beta\eta(X)(\alpha^2 - \beta^2 - \varepsilon(\xi\beta)) \]

Hence \((3.4.17)\) and \((3.4.18)\) yield,

\((3.4.19)\)
\[2n\{2\alpha(X\alpha) - 2\beta(X\beta) - \varepsilon X(\xi\beta)\} \]
\[-2\alpha\{(\varphi^2 X)\alpha + (2n - 1)\varphi X\beta\} \]
\[-2\varepsilon\beta\{2n(\alpha^2 - \beta^2) - \varepsilon \xi \beta\}\eta(X) - \varepsilon(\varphi X)\alpha - \varepsilon(2n - 1)X\beta \]
\[+ 4n\varepsilon\beta\eta(X)(\alpha^2 - \beta^2 - \varepsilon(\xi\beta)) \]
\[= 2n(\alpha^2 - \beta^2 - \varepsilon(\xi\beta))A(X) \]
\[+ \{B(\xi) + D(\xi)\}(2n - 1)(\alpha^2 - \beta^2)\eta(X) \]
\[-\varepsilon(\varphi X)\alpha - \varepsilon(2n - 1)X\beta \]
\[+ \{\alpha^2 - \beta^2 - \varepsilon(\xi\beta)\}\{B(X) + D(X)\} \]

Now taking \(U = Z = X\) in \((3.4.15)\) and \((3.4.16)\) and adding we get,

\((3.4.20)\)
\[B(X) + D(X) \]
\[= 2\left[\frac{\{2n(2\alpha \xi \alpha - 2\beta \xi \beta) - \varepsilon \xi (\xi \beta)\}\eta(X)}{(2n - 1)(\alpha^2 - \beta^2 - \varepsilon \xi \beta)}\right] \]
\[-2\varepsilon\frac{\varphi X(\xi \alpha) + (2n - 1)X(\xi \beta)}{(2n - 1)(\alpha^2 - \beta^2 - \varepsilon \xi \beta)} \]
\[
\frac{B(\xi) + D(\xi)}{(2n-1)(\alpha^2 - \beta^2 - \epsilon \xi \beta)} \left[(2n-1)(\alpha^2 - \beta^2) \right] \eta(X)
- \epsilon(\phi X)\alpha - \epsilon(2n-1)X\beta
- \frac{2\alpha \xi \alpha - 2\beta \xi \beta - \xi(\xi \beta)}{(2n-1)(\alpha^2 - \beta^2 - \epsilon \xi \beta)^2} \left[2n(\alpha^2 - \beta^2) - \epsilon \xi \beta \right] \eta(X)
- \epsilon(\phi X)\alpha - \epsilon(2n-1)X\beta
\]

Separating for the following expression from (4.20) we have,

(3.4.21) \[
\{B(\xi) + D(\xi)\} \left[(2n-1)(\alpha^2 - \beta^2) \right] \eta(X)
- \epsilon(\phi X)\alpha - \epsilon(2n-1)X\beta
= \left((2n-1)(\alpha^2 - \beta^2 - \epsilon \xi \beta) \right) \{B(X) + D(X)\}
- 2\{2n(2\alpha \xi \alpha - 2\beta \xi \beta - \epsilon \xi \beta)\} \eta(X)
+ 2\epsilon \{\phi X(\xi \alpha) + (2n-1)X(\xi \beta)\}
+ \frac{2\alpha \xi \alpha - 2\beta \xi \beta - \xi(\xi \beta)}{(2n-1)(\alpha^2 - \beta^2 - \epsilon \xi \beta)^2} \left[2n(\alpha^2 - \beta^2) - \epsilon \xi \beta \right] \eta(X)
- \epsilon(\phi X)\alpha - \epsilon(2n-1)X\beta
\]

Substituting for \{B(\xi) + D(\xi)\} \left[(2n-1)(\alpha^2 - \beta^2) \right] \eta(X)
- \epsilon(\phi X)\alpha - \epsilon(2n-1)X\beta

From (3.4.21) in (3.4.19) and further after lengthy simplification finally we get,

(3.4.22)

\[
A(X) + B(X) + D(X) = \frac{2\alpha(X\alpha) - 2\beta(X\beta) - \epsilon X(\xi \beta)}{\alpha^2 - \beta^2 - \epsilon(\xi \beta)}
+ \frac{\alpha}{n} \left[X\alpha - \eta(X)(\xi \alpha) - (2n-1)(\phi X)\beta \right]
+ \frac{\beta}{n} \left[(\phi X)\alpha + (2n-1)(X\beta) - (\xi \beta)\eta(X) \right]
- \frac{\epsilon}{n} \left[\phi X(\xi \alpha) + (2n-1)X(\xi \beta) \right]
\]

65
for any vector field X provided $\alpha^2 - \beta^2 - \epsilon \xi \beta \neq 0$. This leads to the following,

Theorem 3.4.3. In a weakly symmetric ϵ-Trans-Sasakian Manifold (M^{2n+1}, g) $(n>1)$ of non vanishing ξ-sectional curvature, the sum of the associated 1-forms A, B, and D is given by (3.4.22).

In particular, if $\varphi(\text{grad} \alpha) = \text{grad} \beta$, then $\xi \beta = 0$, and hence relation (3.4.22) reduces to the following form:

(3.4.23) \quad A(X) + B(X) + D(X)

\[
= \frac{2\alpha(X\alpha) - 2\beta(X\beta)}{\alpha^2 - \beta^2} + \frac{\alpha\{X\alpha - \eta(X)(\xi\alpha) - (2n-1)(\varphi X)\beta\}}{n(\alpha^2 - \beta^2)} + \frac{\beta\{(\varphi X)\alpha + (2n-1)(X\beta)\}}{n(\alpha^2 - \beta^2)} + \frac{4n\alpha(\xi\alpha)\eta(X) - \epsilon\varphi X(\xi\alpha)}{n(\alpha^2 - \beta^2)} - \frac{2\alpha(\xi\alpha)[2n(\alpha^2 - \beta^2)]\eta(X) - \epsilon(\varphi X)\alpha - \epsilon(2n-1)X\beta}{n\{\alpha^2 - \beta^2\}^2}
\]

for any vector field X provided, $(\alpha^2 - \beta^2) \neq 0$. This leads to the following,

Corollary 3.4.3. In a weakly symmetric non cosymplectic ϵ-trans-Sasakian manifold (M^{2n+1}, g) $(n>1)$ of non vanishing ξ-sectional curvature satisfies the condition $\varphi(\text{grad} \alpha) = \text{grad} \beta$, then the sum of the associated 1-forms satisfies (3.4.23).
If \(\alpha = 1, \beta = 0 \), then (3.4.23) yields, \(A + B + D = 0 \). Thus we have the following corollary,

Corollary 3.4.4. There is no weakly symmetric \(\varepsilon \)-Sasakian manifold \((M^{2n+1}, g)\) (\(n>1\)), unless the sum of 1-forms is everywhere zero.

If \(\alpha = 0, \beta = 1 \), then (4.22) yields, \(A + B + D = 0 \). Thus we state the following.

Corollary 3.4.5. There is no weakly symmetric \(\varepsilon \)-Kenmotsu manifold \((M^{2n+1}, g)\) (\(n>1\)), unless the sum of 1-forms is everywhere zero.

If \(\alpha = 1, \beta = 0 \), then (3.4.22) yields,

\[
(3.4.24) \quad A(X) + B(X) + D(X) = \frac{2(X\alpha)}{\alpha} - \frac{1}{n} \left[\phi^2 X\alpha + \varepsilon \varphi X(\xi\alpha) \right] - \frac{2}{n} \left[\frac{\xi\alpha(2n\alpha^2 \eta(X) - \varepsilon \varphi \alpha)}{\alpha^3} \right] + \left[\frac{4(\xi\alpha)\eta(X)}{\alpha} \right]
\]

Hence we can state,

Corollary 3.4.6. If an \(\varepsilon \)-\(\alpha \)-Sasakian manifold \((M^{2n+1}, g)\) (\(n>1\)) is weakly symmetric then the sum of the 1-forms satisfies (4.24).

In particular if \(\alpha \) is a non zero constant, then (4.24) yields,

\[
(3.4.25) \quad A + B + D = 0
\]

Hence we state,

Corollary 3.4.7. If an \(\varepsilon \)-\(\alpha \)-Sasakian manifold \((M^{2n+1}, g)\) (\(n>1\)) with \(\alpha \) non zero constant is weakly symmetric then the sum of the 1-forms satisfies (3.4.25).

If \(\alpha = 0 \), then (3.4.22) yields,

\[
(3.4.26) \quad A(X) + B(X) + D(X) = \frac{2\beta(X\beta) + \varepsilon X(\xi\beta)}{\beta^2 + \varepsilon (\xi\beta)} + \frac{\varepsilon \beta}{n} \left[-\frac{2n\beta^2 \eta(X) + (2n-1)X\beta}{\beta^2 + \varepsilon (\xi\beta)} \right]
\]

67
\[+ \frac{1}{n} \left[\frac{4n\beta \xi \beta + \varepsilon \xi \xi \beta}{\beta^2 + \varepsilon \xi \beta} \right] \eta(X) \]

\[- \frac{1}{n} \left[\frac{2\beta \xi \beta + \varepsilon \xi \xi \beta \{2n\beta^2 + \varepsilon \xi \beta\} \eta(X) + \varepsilon (2n - 1)X \xi \beta}{[\beta^2 + \varepsilon \xi \beta]^2} \right] \]

Hence we can state,

Corollary 3.4.8. If an \(\epsilon - \beta \)-Kenmotsu manifold \((M^{2n+1}, g)\) \((n > 1)\) is weakly symmetric then the sum of the 1-forms satisfies (3.4.26).

Remark. It is clear that if \(\xi \)-is a space like vector field of the structure, i.e. \(\epsilon = 1 \) then some of the results of [6] A.A. Shaikh and S.K. Hui i.e. Theorems 3.1.3.2 and 3.3 [216-218, pp] and the corollaries their under shall include as special cases of respective Theorems 4.1, 4.2, 4.3 and the corollaries their under.
References:

