CONTENTS

CHAPTER I 1- 48

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Classification of vitamins</td>
<td>2</td>
</tr>
<tr>
<td>Water soluble vitamins</td>
<td>3</td>
</tr>
<tr>
<td>Fat soluble vitamins</td>
<td>5</td>
</tr>
<tr>
<td>The first row transition metals and their biological significance</td>
<td>13</td>
</tr>
<tr>
<td>Metal chelates in solutions</td>
<td>14</td>
</tr>
<tr>
<td>Factors affecting the stability of complexes in solution</td>
<td>17</td>
</tr>
<tr>
<td>Aim of the present work</td>
<td>20</td>
</tr>
<tr>
<td>Importance of stability Constants</td>
<td>22</td>
</tr>
<tr>
<td>Determination of stability constant</td>
<td>23</td>
</tr>
<tr>
<td>Experimental method of the determination of stability constants</td>
<td>27</td>
</tr>
<tr>
<td>Calculation of \bar{n}_A values</td>
<td>29</td>
</tr>
<tr>
<td>Calculation of pK values</td>
<td>30</td>
</tr>
<tr>
<td>a) Half integral method</td>
<td></td>
</tr>
<tr>
<td>b) Point wise calculation method</td>
<td></td>
</tr>
<tr>
<td>Calculations of metal –ligand stability constants</td>
<td>31</td>
</tr>
<tr>
<td>\bar{n} and pL values</td>
<td></td>
</tr>
<tr>
<td>Calculation of logK values</td>
<td>32</td>
</tr>
<tr>
<td>a) Half integral method</td>
<td></td>
</tr>
<tr>
<td>b) Point wise calculation method</td>
<td></td>
</tr>
<tr>
<td>c) Method of least squares</td>
<td></td>
</tr>
</tbody>
</table>
Limitations of Calvin-Bjerrum titration technique 35

Importance of chemical kinetics 36

Rate of reaction 39

Order of reaction 39

Determination of rate of reaction 40

a) Zero order reaction
b) First order reaction
c) Second order reaction

References 43

CHAPTER II 49 – 146

Introduction 49

Vitamins 51

1) Menadione
2) α-Tocopherol
3) Cholecalciferol

Experimental Details 54

Water-

Solution

Standardization of glasswares

Serological water bath

Digital pH Meter 56

Maintenance of combined electrode 57

Calibration of pH meter scale 58
Inert atmosphere

Precision and accuracy of the experimental results

Experimental procedure

Calculations of proton ligand stability constants of vitamins

1) Point wise calculation method

2) Half integral method

Calculation of metal ligand stability constants

1) Point wise calculation method

Menadione \((R_1)\)–Vanadium (II) system

Potentiometric titration of –Menadione \((R_1)\)–Vanadium (II) system

Potentiometric titration curve for Menadione \((R_1)\)–V(II) system

Proton ligand stability constant of Menadione \((R_1)\)–V(II) system

Point wise calculations for \(pK_1\) of Menadione \((R_1)\)–V(II) system

Determination of \(\bar{n}\) and \(pL\) values for Menadione\((R_1)\)–V(II) system

Determination of metal ligand stability constant for Menadione \((R_1)\)–V(II) system by pointwise calculation method

Metal ligand formation curve for Menadione \((R_1)\)–V(II) system

Menadione\((R_1)\)–Fe(III) system

Menadione \((R_1)\)-Cu (II) system

Menadione \((R_1)\)-Zn(II) system

Menadione \((R_1)\)–Pb(II) system

Potentiometric titration curve of
A) Menadione (R₁)–Fe(III) system 91
B) α-Tocopherol (R₂)–Fe(III) system 92
C) Cholecalciferol (R₃)–Fe(III) system 93

Formation constants (pK₁) of vitamins in various solvents at different temperatures 94

Proton–ligand formation curves for Menadione (R₁) 95

Stability constants of—
A) Menadione (R₁) with transition metal ions 92
B) α-Tocopherol (R₂) with transition metal ions 93
C) Cholecalciferol (R₃) with transition metal ions 94

Thermodynamic parameters of—
A) Menadione (R₁) with transition metal ions 96
B) α-Tocopherol (R₂) with transition metal ions 103
C) Cholecalciferol (R₃) with transition metal ions 106

Results and Discussion 110

Effect of substituent on pK values 110
Metal ligand stability constants of transition metal complexes 112
Effect of ligand basicity 112
Effect of metal ions 115
The ligand effect 118
Complexes of menadione (R₁) in aquo-organic medium 126
The chelate effect 133
References 135

CHAPTER III 147 - 197
Rate of reaction 148
Determination of rate of reaction 148
Spectrophotometer 151
Preparation of complex solution of menadione 151
Determination of rate constant of Menadione in aqo organic media 153
Effect of varying concentration of

1) KMnO₄ 156
2) Zn(II) 162
3) Ni(II) 168
4) Co(II) 173
5) KBr 178

Results and Discussion 183
References 190
Summary 194