CONTENTS

<table>
<thead>
<tr>
<th>Abstract</th>
<th>i-iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>v</td>
</tr>
<tr>
<td>Certificate by the Principal Supervisor</td>
<td>vi</td>
</tr>
<tr>
<td>Certificate of the External Examiner</td>
<td>vii</td>
</tr>
<tr>
<td>Content</td>
<td>viii-xv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvi-xvii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xviii-xx</td>
</tr>
<tr>
<td>List of abbreviation</td>
<td>xxi-xxii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxiii-xxiv</td>
</tr>
</tbody>
</table>

CHAPTER I

Introduction

1.1. General 1-4

1.2. Hair growth cycle 5-8

1.3. Factors responsible for hair growth 9-10

1.4. Hair ailments 10-14

1.5. Alopecia areata 14-15

1.6. Medical status for Alopecia treatments 15-16

1.7. Phytopharmaceuticals used for treating Alopecia 16-17

1.8. Objectives 18
CHAPTER II

REVIEW OF LITERATURE

2.1. Hair ailments 19-22
2.2. Alopecia areata 22-24
2.3. Synthetic drugs for treating Alopecia 24-30
2.4. Natural Products and their activity against Alopecia areata 30-31
2.5. Applications of various plant extracts on hair regenerations 31-41
2.6. Animal models used for the study of hair regenerations 42-44

CHAPTER III

MATERIALS AND METHODS

3. Overall Methodology of the Study 45
3.1. Collection of plants 46
3.2. Morpho-phenological study of the plants 46
3.3. Genomic study of the selected plants
 3.3.1. DNA isolation 47
 3.3.1.1. Equipments used 47-48
 3.3.1.2. Reagents and chemicals 48-49
 3.3.1.3. Buffers 49
 3.3.1.3.1. Extraction buffer 49
 3.3.1.3.2. High salt TE buffer 50
 3.3.1.3.3. TAE buffer 50
 3.3.1.4. Loading dye and fluorochrome 50
3.3.1.5. Bromophenol blue 50
3.3.1.6. Ethidium bromide 50-51
3.3.1.7. DNA isolation protocol 51-52
3.3.1.8. Modifications of the protocol 53
3.3.1.9. Purity and yields of isolated DNA from selected plants 53
3.3.2. Genome size determination of selected plants 53
3.3.2.1. Preparation of Otto I buffer 53-54
3.3.2.2. Preparation of Otto II buffer 54
3.3.2.3. Preparation of stain or flurochrome 54
3.3.2.4. Procedure of genome size determination 54-55
3.4. Isolation of phyto-compounds from the selected plants
3.4.1. Isolation of phyto-compounds from *Eclipta alba*
3.4.1.1. Preparations of crude extracts from *Eclipta alba* 55-56
3.4.1.2. Fractionation of crude extracts from *Eclipta alba* 56
3.4.1.3. Thin layer chromatography of crude extracts from *Eclipta alba* 56-57
3.4.2. Isolation of phyto-compounds from *Aloe barbadensis*
3.4.2.1. Preparations of crude extracts from *Aloe barbadensis* 57
3.4.2.2. Fractionation of crude extracts from *Aloe barbadensis* 57
3.4.2.3. Thin layer chromatography of crude extracts from *Aloe barbadensis* 57-58
3.5. Chemical characterization and structure elucidation of isolated compounds 58
3.5.1. High performance liquid chromatography (HPLC) 58-59
3.5.2. Fourier Transformation Infrared Spectroscopy (FTIR) 60
3.5.3. Mass spectroscopy 60
3.5.4. Nuclear Magnetic Resonance (NMR) Spectroscopy 60
3.6. Biological characterization of the isolated compounds
3.6.1. Antibacterial assay of the isolated compounds 60
3.6.1.1. Test organisms 61
3.6.1.2. Media 61
3.6.1.2.1. Nutrient Agar medium 61
3.6.1.2.2. Muller Hinton agar medium 61-62
3.6.1.3. Determination of antibacterial activity 62-63
3.6.2. Antifungal assay of the isolated compounds 63
3.6.2.1. Test organisms 63
3.6.2.2. Media used 64
3.6.2.3. Determination of antifungal activity 64-65
3.6.3. Antioxidant assay 65
3.6.3.1. Chemicals and Reagents used 65
3.6.3.2. Determination of free radical scavenging activity 65-66
3.6.4. Assessment of cell cytotoxicity on murine macrophage cell line 66-67
3.7. Inducing Alopecia areata on animal model using warfarin 67
3.7.1. Animal Husbandry and Maintenance 67
3.7.2. Inducing Alopecia areata 68
3.8. Application of isolated phyto-compounds 68
3.8.1. Acute dermal irritation study 69
3.8.2. Qualitative study 69
3.8.3. Haematological study 69-70
3.8.4. Study of serum 70
3.8.5. Histological study

3.8.5.1. Chemicals 71
3.8.5.2. Preparations of reagents

3.8.5.2.1. Acid-alcohol solution 71
3.8.5.2.2. Mayer's albumin 71
3.8.5.3. Staining Protocol 71-74

CHAPTER IV

RESULTS

4.1. Morpho-phenological characters of the selected plants 75

4.1.1. Eclipta alba 76-78

4.1.2. Aloe barbadensis 78-80

4.2. Genomic study of the plants

4.2.1. DNA isolation 80-81

4.2.2. Genome size determination of the plants 81-83

4.3. Isolation and purification of Medicinal compounds

4.3.1. Isolation from Eclipta alba 83-85

4.3.2. Isolation from Aloe barbadensis 86-87
4.4. Chemical characterization and Structure elucidation of the purified compounds

4.4.1. *Eclipta alba* 88-93

4.4.2. *Aloe barbadensis* 94-98

4.5. Biochemical characterizations

4.5.1. Microbial assay

4.5.1.1. Antibacterial assay 99-101

4.5.1.2. Antifungal assay 102-103

4.5.2. Antioxidant assay 103-105

4.5.3. Cytotoxicity assay 105-106

4.6. Acute dermal irritation study of the purified compounds 106-107

4.7. Induction Alopecia in Wistar albino rats 108-109

4.8. Qualitative study of hair regeneration 110-113

4.9. Haematology and serum biochemical study 114-115

4.10. Histological study of the treated and control skin 116-118

CHAPTER V

Discussions 119-120

5.1. Morpho-phenological characterization of the plants selected

5.1.1. *Eclipta alba* 120

5.1.2. *Aloe barbadensis* 120-121
5.2. Genomic study of the plants

5.2.1. DNA isolation of plants 121-122
5.2.2. Genome size determination 122-123

5.3. Isolation of the phyto-compounds

5.3.1. Isolation from *Eclipta alba* 124-125
5.3.2. Isolation from *Aloe barbadensis* 125

5.4. Chemical characterization and Structure determination of the compounds

5.4.1. *Eclipta alba* 125-127
5.4.2. *Aloe barbadensis* 127-128
5.4.3. Structural similarities of Minoxidil with Ea 1 and Av 4 128-129

5.5. Biochemical characterization 125

5.5.1. Microbial assay of the phyto-compounds

5.5.1.1. Antibacterial activity 130-133
5.5.2. Antifungal activity 133-134
5.5.3. Antioxidant assay of the isolated compounds 134-136
5.5.4. Cytotoxicity assay 136-137

5.6. Acute dermal irritation study of the phyto-compounds 137-138

5.7. Inducing alopecia in wistar albino rats 138-140

5.8. Qualitative study of hair growth in wistar albino rats 140-141

5.9. Haematology and biochemical analysis of serum 141-142

5.10. Histological analysis 142-143
CHAPTER VI

Conclusions & future work

6.1. Conclusions

6.2. Future work

REFERENCES

PUBLICATIONS