<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIG. 1.1</td>
<td>SCHEMATIC REPRESENTATION OF DIFFERENT DEHUMIDIFICATION PROCESSES IN SUMMER</td>
</tr>
<tr>
<td>FIG. 1.2</td>
<td>PSYCHROMETRIC REPRESENTATION OF DIFFERENT DEHUMIDIFICATION PROCESSES</td>
</tr>
<tr>
<td>FIG. 1.3</td>
<td>SCHEMATIC REPRESENTATION OF THE PRESENT WORK</td>
</tr>
<tr>
<td>FIG. 4.1</td>
<td>EQUILIBRIUM CURVES</td>
</tr>
<tr>
<td>FIG. 4.2</td>
<td>MODEL OF A DEHUMIDIFIER</td>
</tr>
<tr>
<td>FIG. 4.3</td>
<td>FLOW CHART - STATIC BED DEHUMIDIFIER</td>
</tr>
<tr>
<td>FIG. 4.4</td>
<td>SUBROUTINE EQ 80</td>
</tr>
<tr>
<td>FIG. 4.5</td>
<td>SUBROUTINE CHEK</td>
</tr>
<tr>
<td>FIG. 4.6</td>
<td>SPHERICAL MODEL</td>
</tr>
<tr>
<td>FIG. 4.7</td>
<td>ENERGY BALANCE AT THE INTERFACE</td>
</tr>
<tr>
<td>FIG. 4.8</td>
<td>FLOW CHART - THREE PHASE FLUIDIZED BED DEHUMIDIFIER</td>
</tr>
<tr>
<td>FIG. 4.9</td>
<td>FLOW CHART (CONTINUED)</td>
</tr>
<tr>
<td>FIG. 4.10</td>
<td>SUB PROGRAMS</td>
</tr>
<tr>
<td>FIG. 4.11</td>
<td>SUBPROGRAM - BTEMP</td>
</tr>
<tr>
<td>FIG. 5.1</td>
<td>SCHEMATIC DIAGRAM OF THE EXPERIMENTAL SETUP</td>
</tr>
<tr>
<td>FIG. 5.2</td>
<td>DISTRIBUTOR PLATE</td>
</tr>
<tr>
<td>FIG. 5.3</td>
<td>CALIBRATION CHART FOR THE THERMOCCouPLE</td>
</tr>
<tr>
<td>FIG. 5.4</td>
<td>SCHEMATIC REPRESENTATION OF THE INSTRUMENTATION</td>
</tr>
<tr>
<td>FIG. 6.1</td>
<td>AVAILABILITY VARIATIONS IN THE DEHUMIDIFICATION PROCESS FOR SUMMER CONDITIONS</td>
</tr>
</tbody>
</table>
FIG. 6.2 AVAILABILITY VARIATIONS IN THE DEHUMIDIFICATION PROCESS FOR WINTER CONDITIONS

FIG. 6.3 AVAILABILITY VARIATIONS IN REGENERATION PROCESSES FOR SUMMER CONDITIONS

FIG. 6.4 AVAILABILITY VARIATION IN REGENERATION PROCESSES FOR WINTER CONDITIONS

FIG. 6.5 VARIATION OF DESSICANT AND AIR TEMPERATURE ALONG THE STATIC BED DEHUMIDIFIER

FIG. 6.6 VARIATION OF DESSICANT SOLUTION TEMPERATURE ALONG THE STATIC BED DEHUMIDIFIER

FIG. 6.7 VARIATION OF HUMIDITY ALONG THE DEHUMIDIFIER

FIG. 6.8 VARIATION OF MOLE FACTOR OF MOISTURE IN AIR ALONG THE DEHUMIDIFIER

FIG. 6.9 THE EFFECT OF REDUCTION IN SPECIFIC HUMIDITY ON TEMPERATURE

FIG. 6.10 VARIATION OF DESSICANT SOLUTION AND AIR TEMPERATURE ALONG THE REGENERATOR

FIG. 6.11 VARIATION OF HUMIDITY ALONG THE REGENERATOR

FIG. 6.12 VARIATION OF AIR TEMPERATURE IN THE REGENERATOR

FIG. 6.13 EFFECT OF STATIC BED HEIGHT, AIR VELOCITY AND SOLUTION FLOW RATE ON BED PRESSURE DROP

FIG. 6.15 EFFECT OF STATIC BED HEIGHT, AIR VELOCITY AND SOLUTION FLOW RATE ON BED PRESSURE DROP

FIG. 6.17 THE EFFECT OF STATIC BED HEIGHT, SOLUTION FLOW RATE AND AIR VELOCITY ON THE FLUIDIZED BED HEIGHT
FIG. 6.19 THE EFFECT OF STATIC BED HEIGHT,
& 6.20 SOLUTION FLOW RATE AND AIR VELOCITY
ON THE FLUIDIZED BED HEIGHT
FIG. 6.21 THE EFFECT OF STATIC BED HEIGHT,
SOLUTION FLOW RATE AND AIR VELOCITY
ON THE FLUIDIZED BED HEIGHT
FIG. 6.22 EFFECT OF LIQUID FLOW RATE ON
FLUIDIZATION FACTOR
FIG. 6.23 MINIMUM FLUIDIZATION VELOCITY DURING
ONSET OF AND SETTLING DOWN OF THE BED
FIG. 6.24 EFFECT OF SOLUTION FLOW RATE ON
FLUIDIZATION FACTOR
FIG. 6.25 EFFECT OF STATIC BED HEIGHT,
on FLOODING
FIG. 6.26 EFFECT OF SOLUTION FLOW ON FLOODING RATE
FIG. 6.27 EFFECT OF INITIAL AIR TEMPERATURE ON
THE CRITICAL TEMPERATURE
FIG. 6.28 EFFECT OF INITIAL CONCENTRATION OF THE
solution on the CRITICAL TEMPERATURE
FIG. 6.29 VARIATION OF RESIDENCE TIME WITH THE
AIR VELOCITY
FIG. 6.30 VARIATION OF LOCAL HEAT AND MASS
TRANSFER COEFFICIENTS WITH TIME
FIG. 6.31 VARIATION OF MASS TRANSFER POTENTIAL
FIG. 6.32 CONCENTRATION FOR POSITIVE MASS TRANSFER
FIG. 6.33 EFFECT OF VELOCITY OF AIR ON HEAT
TRANSFER
FIG. 6.34 EFFECT OF AIR VELOCITY ON MASS TRANSFER
FIG. 6.35 EFFECT OF SOLUTION CONCENTRATION ON
MASS TRANSFER
FIG. 6.36 EFFECT OF SOLUTION FLOW RATE ON
SHERWOOD NUMBER
FIG. 6.37 EFFECT OF AIR VELOCITY ON SHERWOOD
NUMBER
FIG. 6.38 EFFECT OF FLUID FLOW ON FLUIDIZED BED HEIGHT
FIG. 6.39 VARIATION OF MASS TRANSFER WITH U/U_{mf}
FIG. 6.40 VARIATION OF EMULSION AND BUBBLE PHASE MASS TRANSFER
FIG. 6.41 VARIATION OF MASS TRANSFER COEFFICIENT AND INTERFACIAL AREA WITH AIR VELOCITY
FIG. 6.42 VARIATION OF MASS TRANSFER WITH U/U_{mf}
FIG. 6.43 VARIATION OF HEAT TRANSFER IN EMULSION AND BUBBLE PHASE
FIG. 6.44 EFFECT OF PARTICLE SHAPE ON TEMPERATURE, CONCENTRATION AND PRESSURE DROP
FIG. 6.45 TEMPERATURE VARIATION ALONG THE DEHUMIDIFIER BED
FIG. 6.46 EFFECT OF FLUIDIZATION FACTOR ON MASS TRANSFER COEFFICIENT
FIG. 6.47 EFFECT OF FLOW RATIO ON 'k_g.a' IN REGENERATOR
FIG. 6.48 EFFECT OF FLOW VELOCITY ON MASS TRANSFER IN 2 PHASE AND 3 PHASE FLUIDIZED BEDS
FIG. 6.49 EFFECT OF AIR VELOCITY ON MASS TRANSFER IN THE REGENERATOR
FIG. 6.50 VARIATION OF Nu AND Sh WITH Reg/Red.
FIG. 6.51 EFFECT OF FLOW VELOCITY ON HEAT TRANSFER IN 2 PHASE AND 3 PHASE FLUIDIZED BEDS
FIG. 6.52 COMPARISON OF FLUIDIZED BED AND STATIC BED DEHUMIDIFICATION SYSTEMS
FIG. 6.53 EFFECT OF MOISTURE TRANSFER NUMBER ON DEHUMIDIFICATION
FIG. 6.54 EFFECT OF MOISTURE TRANSFER NUMBER ON REGENERATION